Researchers identify new genetic mutation for ALS

January 15, 2013
This is Dr. Michael Strong, Dean of Western University's Schulich School of Medicine & Dentistry, and ALS scientist at Robarts Research Institute. Credit: Schulich School of Medicine & Dentistry, Western Unviersity

Researchers at Western University in London, Canada, have identified a new genetic mutation for amyotrophic lateral sclerosis (ALS), opening the door to future targeted therapies. Dr. Michael Strong, a scientist with Western's Robarts Research Institute and Distinguished University Professor in Clinical Neurological Sciences at the Schulich School of Medicine & Dentistry, and colleagues found that mutations within the ARHGEF28 gene are present in ALS. When they looked across both familial and sporadic forms of the disease, they found that virtually all cases of ALS demonstrated abnormal inclusions of the protein that arises from this gene.

The research is published online in and Frontotemporal Degeneratio, the official journal of The World Federation of Neurology Research Group on Motor Neuron Diseases.

ALS, sometimes called Lou Gehrig's disease, is a progressive disease that affects the motor neurons that connect the brain to muscles throughout the body. It is a devastating with 90 per cent of patients dying within five years of diagnosis. As many as 30,000 Americans and 2,000 Canadians are living with ALS.

The video will load shortly
Using confocal microscopy, Dr. Michael Strong of Western University's Schulich School of Medicine & Dentistry shows how abnormal protein from the ARHGEF28 gene is deposited in a motor neuron from a person with ALS. Credit: Schulich School of Medicine & Dentistry, Western University

Strong's team is convinced ALS is a disorder of RNA metabolism. RNA is the intermediary or messenger between genes and the being made. This new protein appears to play a critical role. "Every time we look at a cell degenerating, this particular protein was deposited abnormally in the cell. It was a common denominator," explains Strong, who is also the Dean of Schulich Medicine & Dentistry. "Working with Dr. Rob Hegele at Robarts, we found there was a genetic mutation in the gene coding for this protein. So it's a huge discovery."

The video will load shortly
Researchers at Western University in London, Canada, have identified a new genetic mutation for amyotrophic lateral sclerosis (ALS), opening the door to future targeted therapies. Dr. Michael Strong and colleagues found that mutations within the ARHGEF28 gene are present in ALS. Credit: Western University

Unlike most proteins which have one key function, this one has two. "One side works with RNA. The other side has the capacity to regenerate or to deal with an injury. We think those are competitive activities so if it's doing one, it's not available to do the other," says Strong. In the case of ALS, Strong believes the protein is disturbed on the RNA side so it's no longer able to respond to cell injury. "We need to understand what causes the switch between the two functions, and then can we modulate it."

Explore further: Disease progression halted in rat model of Lou Gehrig's disease

Related Stories

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

Scientists identify mutation in SIGMAR1 gene linked to juvenile ALS

August 12, 2011
Researchers from the Kingdom of Saudi Arabia have identified a mutation on the SIGMAR1 gene associated with the development of juvenile amyotrophic lateral sclerosis (ALS). Study findings published today in Annals of Neurology, ...

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.