Mutation linked to protein degradation underlies inherited ALS

December 8, 2010

A new study identifies a previously unrecognized mutation that causes an inherited form of amyotrophic lateral sclerosis (ALS). The research, published by Cell Press in the December 9th issue of the journal Neuron, implicates defects in a cellular pathway linked with degradation of unwanted proteins in the underlying pathology of ALS and provides new insight into this incurable and fatal neurodegenerative disease.

ALS, also known as Lou Gehrig's disease, is a devastating disease that causes destruction of the neurons in the brain and spinal cord that control voluntary movement. There is no cure for ALS, which is characterized by a progressive paralysis that often leads to death from within three to five years of diagnosis. It is estimated that about 5% of ALS cases are inherited and a few genetic mutations linked with these familial cases of ALS have been identified.

"The identification of genes underlying rare familial forms of ALS has had a significant impact on our understanding of the molecular mechanisms underlying typical ALS," explains senior study author Dr. Bryan J. Traynor from the Laboratory of Neurogenetics at the National Institutes of Health in Bethesda, Maryland. "Each new gene implicated in the etiology of ALS provides fundamental insights into the pathogenesis of motor neuron degeneration, as well as facilitating disease modeling and the design and testing of targeted therapeutics; hence, there is much interest in the identification of novel genetic mutations."

In an effort to further examine underlying associated with ALS, Dr. Traynor, along with his Italian collaborators Drs. Adriaon Chio, Gabriella Restagno and Jessica Mandrioli employed a sophisticated technique to examine the entire "exome", all of the genes that carry instructions for making proteins, in a family with inherited ALS. Importantly, this particular ALS family did not exhibit mutations in genes previously associated with inherited ALS. The researchers identified a mutation in the gene for valosin-containing protein (VCP). VCP protein is part of the ubiquitin-proteasome machinery that degrades unwanted proteins inside the cell.

"Mutant VCP toxicity is partially mediated through its effect on a protein called TDP-43, a major constituent of the neuropathological inclusions that are characteristic of ALS and motor neuron degeneration," says Dr. Traynor. These findings validate the exome sequencing technique for identifying genetic causes of inherited ALS and are the first to implicate abnormalities in VCP and the cellular protein degradation pathway in ALS. "Our study potentially widens the clinical spectrum associated with ALS and provides new insight into this fatal disease," concludes Dr. Traynor.

Related Stories

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

New method identifies brain regions most likely to cause epilepsy seizures

August 17, 2017
Scientists have developed a new way to detect which areas of the brain contribute most greatly to epilepsy seizures, according to a PLOS Computational Biology study. The strategy, devised by Marinho Lopes of the University ...

Scientists identify central neural circuit for itch sensation

August 17, 2017
Itching is an unpleasant sensation associated with the desire to scratch, and the itch sensation is an important protective mechanism for animals. However, chronic itch, often seen in patients with skin and liver diseases, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.