New antimicrobial strategy silences NDM-1 resistance gene in pathogens

September 8, 2014

Researchers have synthesized a molecule that can silence the gene responsible for severe antibiotic resistance in some bacteria. The research, presented at the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), an infectious disease meeting of the American Society for Microbiology (ASM) could be a viable new strategy for treating resistant infections.

The focus of this new molecule is NDM-1 (New Delhi metallo-beta-lactamase-1) a gene carried by some bacteria that allows them to produce an enzyme called carbapenemase.

"NDM-1 confers bacterial resistance to all classes of beta-lactam (penicillin type) antibiotics including carbapenems, powerful antibiotics used when others fail," says Bruce Geller of Oregon State University and author on the study. "NDM-1 has spread rapidly to many bacterial pathogens, including E. coli, Acinetobacter baumannii and Klebsiella pneumoniae. Many of these pathogens are resistant to multiple , which limits treatment options."

Molecule known as a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) are synthetic analogs of DNA or RNA that have the ability to silence the expression of specific genes. In this study Geller and his colleagues at Oregon State University and the University of Texas Southwestern have design, synthesized and tested a PPMO that is complimentary to the NDM-1 gene, allowing it to bind specifically to NDM-1 mRNA, essentially silencing the gene.

"When the NDM-1 PPMO was added to growing cultures of multidrug-resistant E. coli, A. baumannii or K. pneumoniae that express NDM-1, it restored susceptibility to carbapenems at therapeutically relevant concentrations," says Geller.

NDM-1 infection was first identified in 2009 in people who resided in or traveled to the India and Pakistan. The first cases in the United States were identified in 2010, and the number of cases is growing. The concern is that these highly carrying NDM-1 could supplant more antibiotic-sensitive strains.

"There is a critical need to find new treatments for antibiotic-resistant pathogens and using a gene-silencing approach, such as with a PPMO, could be one viable strategy for new antimicrobial development," says Geller.

Explore further: Team unearths what may be secret weapon against antibiotic resistance

More information: This research was presented as part of the ASM's 54th ICAAC held September 5-9, 2014 in Washington, DC.

Related Stories

Team unearths what may be secret weapon against antibiotic resistance

June 25, 2014
A fungus living in the soils of Nova Scotia could offer new hope in the pressing battle against drug-resistant germs that kill tens of thousands of people every year, including one considered a serious global threat.

Inexpensive lab test identifies resistant infections in hours

September 7, 2014
Researchers from Oregon State Public Health Lab have modified the protocol for a relatively new test for a dangerous form of antibiotic resistance, increasing its specificity to 100 percent. Their research, confirming the ...

New Delhi metallo-beta-lactamase-1 enzyme acquired in Canada

May 30, 2011
An enzyme associated with extensive antibiotic resistance called New Delhi metallo-ß-lactamase-1 (NDM-1), endemic in India and Pakistan and spreading worldwide, has been found in two people in the Toronto area, one of ...

Recommended for you

Study opens new avenue in quest to develop tuberculosis vaccine

November 24, 2017
A team of scientists led by the University of Southampton has taken an important step forward in research efforts that could one day lead to an effective vaccine against the world's deadliest infectious disease.

Four simple tests could help GPs spot pneumonia and reduce unnecessary antibiotics

November 23, 2017
Testing for fever, high pulse rate, crackly breath sounds, and low oxygen levels could be key to helping GPs distinguish pneumonia from less serious infections, according to a large study published in the European Respiratory ...

New approach to tracking how deadly 'superbugs' travel could slow their spread

November 22, 2017
Killer bacteria - ones that have out-evolved our best antibiotics—may not go away anytime soon. But a new approach to tracking their spread could eventually give us a fighting chance to keep their death toll down.

Research points to diagnostic test for top cause of liver transplant in kids

November 22, 2017
Biliary atresia is the most common cause of liver transplants for children in the United States. Now researchers report in Science Translational Medicine finding a strong biomarker candidate that could be used for earlier ...

Alcohol consumption and metabolic factors act together to increase the risk of severe liver disease

November 22, 2017
A new study provides insights into the interaction between alcohol consumption and metabolic factors in predicting severe liver disease in the general population. The findings, which are published in Hepatology, indicate ...

Metabolites altered in chronic kidney disease

November 22, 2017
Chronic kidney disease (CKD) affects 1 in 7 people in the United States, according to the U.S. National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK). These individuals have a very high risk of cardiovascular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.