Seizures and sudden death: When SUMO 'wrestles' potassium channels

September 3, 2014

A gene crucial for brain and heart development may also be associated with sudden unexplained death in epilepsy (SUDEP), the most common cause of early mortality in epilepsy patients.

Scientists at The University of Texas MD Anderson Cancer Center have created a new for SUDEP and have shown that mice who have a partial deficiency of the gene SENP2 (Sentrin/SUMO-specific protease 2) are more likely to develop spontaneous and . The finding occurred when observing mice originally bred for studying a link between SENP2 deficiency and cancer.

"SENP2 is highly present in the hippocampus, a critical brain region for seizure genesis," said Edward Yeh, M.D., chair of cardiology at MD Anderson. "Understanding the genetic basis for SUDEP is crucial given that the rate of sudden death in is 20-fold that of the general population, with SUDEP the most common epilepsy-related cause of death."

Yeh's findings were published in this month's issue of Neuron.

Although it's not yet known what causes SUDEP in humans, inactivation of genes have been linked to SUDEP in animal models. Potassium channels are found in most cell types and control a large variety of cell functions.

"These animal models demonstrated an important connection between the brain and heart. However, it remains unclear whether seizure and sudden death are two separate manifestations of potassium channel deficiency in the brain and the heart, or whether seizures predispose the heart to lethal cardiac arrhythmia," said Yeh.

The study revealed that when SENP2 was deficient in the brain, seizures activated a part of the nervous system responsible for regulating the heart's electrical system. This resulted in a phenomenon known as atrioventricular conduction block, which effectively slowed down and then stopped the heart.

Yeh's team observed that the SENP2-deficient mice appeared normal at birth, but by 6 to 8 weeks, experienced convulsive seizures, and then sudden death. He believes the reason may lie with protein modifiers called SUMO. SENP2 deficiency results in a process known as hyper-SUMOylation, which dramatically impacts potassium channels in the brain.

"One of the channels, Kv7, is significantly diminished or 'closed' due to the lack of SENP2," said Yeh. "In mice this led to seizures and cardiac arrest."

In humans, the good news is that an FDA-approved drug, retigabine works by "opening" the Kv7 channel. The therapy was developed for treating partial-onset seizures. The findings in Yeh's new mouse model clearly demonstrate a previously unknown cause of SUDEP, which may open up new opportunities for study and treatment in the future.

Explore further: Exploring the cause of sudden unexplained death in epilepsy

Related Stories

Exploring the cause of sudden unexplained death in epilepsy

March 25, 2013

Dravet syndrome (DS) is a form of infantile-onset, treatment-resistant epilepsy that is caused by a mutation in the gene encoding a voltage-gated sodium channel, SCN1A. DS patients have a 30-fold increased risk of dying from ...

Recommended for you

Study finds gray matter density increases during adolescence

May 26, 2017

For years, the common narrative in human developmental neuroimaging has been that gray matter in the brain - the tissue found in regions of the brain responsible for muscle control, sensory perception such as seeing and hearing, ...

Researchers identify brain network organization changes

May 25, 2017

As children age into adolescence and on into young adulthood, they show dramatic improvements in their ability to control impulses, stay organized, and make decisions. Those executive functions of the brain are key factors ...

Scientists demonstrate the existence of 'social neurons'

May 25, 2017

The existence of new "social" neurons has just been demonstrated by scientists from the Institut de neurosciences des systèmes (Aix-Marseille University / INSERM), the Laboratoire de psychologie sociale et cognitive (Université ...

How fear can develop out of others' traumas

May 25, 2017

What happens in the brain when we see other people experiencing a trauma or being subjected to pain? Well, the same regions that are involved when we feel pain ourselves are also activated when we observe other people who ...

Babies' slow brain waves could predict problems

May 25, 2017

The brain waves of healthy newborns – which appear more abnormal than those of severe stroke victims – could be used to accurately predict which babies will have neurodevelopmental disorders.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.