Ultra-high-field MRI reveals language centres in the brain in much more detail

October 28, 2014
Ultra-high-field MRI reveals language centres in the brain in much more detail
Ultra-high-field MRI reveals language centres in the brain in much more detail

In a new investigation by the University Department of Neurology, it has been possible for the first time to demonstrate that the areas of the brain that are important for understanding language can be pinpointed much more accurately using ultra-high-field MRI (7 Tesla) than with conventional clinical MRI scanners. This helps to protect these areas more effectively during brain surgery and avoid accidentally damaging it.

Before surgery, it is important to precisely understand the areas of the brain required for in order to avoid injuring them during the procedure. Their position can shift considerably, especially in patients with tumours or brain injuries. The brain's flexibility also means that language centres can shift to other regions. If the areas responsible for language control and processing are injured during a brain operation, the patient can be left unable to communicate. In order to create a "map" of the language control centres prior to the operation, functional magnetic resonance imaging (fMRI) is used these days.

A multi-centre study from 2013 demonstrated the advantages of fMRI-assisted localisation of the motor centres in the brain. In a new investigation by the working group led by Roland Beisteiner (University Department of Neurology), it has been possible for the first time to demonstrate that the areas of the brain that are important for understanding language can be pinpointed even more accurately using ultra-high-field MRI (7 Tesla) than with conventional clinical MRI scanners. The focus lies on the two most important language centres in the brain known as Wernicke's area (which controls the understanding of language) and Broca's area (which controls the motor functions involved with speech).

The brain is scanned for activity while the patient is carrying out speech exercises. This allows the areas required for speech to be localised much more accurately than previously. "Ultra-high-field MR offers much greater sensitivity than classic MRI scanners", explains Roland Beisteiner, "allowing even very weak signals to be recorded in areas that would otherwise have been missed."

The work was carried out in cooperation between the University Department of Radiology and Nuclear Medicine and other university departments as well as with support from one of the research clusters at Vienna's universities (Roland Beisteiner, Tecumseh Fitch) and was published in the highly respected journal Neuroimage.

Explore further: Functional MRI provides support in operations on the brain

More information: "Differential functional benefits of ultra highfield MR systems within the language network." Neuroimage. 2014 Sep 22;103C:163-170. DOI: 10.1016/j.neuroimage.2014.09.036. [Epub ahead of print]

Related Stories

Functional MRI provides support in operations on the brain

June 14, 2013
Researchers at the MedUni Vienna have proved in a so far unique multicenter study that clinical functional magnetic resonance tomography (fMRI), in the area in which the MedUni Vienna has a leading role internationally, is ...

Areas of the brain process read and heard language differently

March 10, 2014
The brain processes read and heard language differently. This is the key and new finding of a study at the University Department of Radiology and Nuclear Medicine at the MedUni Vienna, unveiled on the eve of the European ...

Non-invasive mapping helps to localize language centers before brain surgery

April 8, 2013
A new functional magnetic resonance imaging (fMRI) technique may provide neurosurgeons with a non-invasive tool to help in mapping critical areas of the brain before surgery, reports a study in the April issue of Neurosurgery, ...

Researchers observe brain development in utero

October 27, 2014
New investigation methods using functional magnetic resonance tomography (fMRT) offer insights into fetal brain development. These "in vivo" observations will uncover different stages of the brain's development. A research ...

A dominant hemisphere for handedness and language?

July 4, 2014
Through an innovative approach using a large psychometric and brain imaging database, researchers in the Groupe d'Imagerie Neurofonctionnelle (CNRS/CEA/Université de Bordeaux) have demonstrated that the location of language ...

7-Tesla MRI scanner allows even more accurate diagnosis of breast cancer

March 7, 2014
Taking part in a recent study, scientists at the MedUni Vienna have demonstrated for the first time worldwide that 7-Tesla ultra-high-field magnetic resonance imaging (MRI) can be used for clinical applications in patients ...

Recommended for you

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Neuroscientists show deep brain waves occur more often during navigation and memory formation

December 12, 2017
UCLA neuroscientists are the first to show that rhythmic waves in the brain called theta oscillations happen more often when someone is navigating an unfamiliar environment, and that the more quickly a person moves, the more ...

How Zika virus induces congenital microcephaly

December 12, 2017
Epidemiological studies show that in utero fetal infection with the Zika virus (ZIKV) may lead to microcephaly, an irreversible congenital malformation of the brain characterized by an incomplete development of the cerebral ...

Presurgical imaging may predict whether epilepsy surgery will work

December 11, 2017
Surgery to remove a part of the brain to give relief to patients with epilepsy doesn't always result in complete seizure relief, but statisticians at Rice University have developed a method for integrating neuroimaging scans ...

Selecting sounds: How the brain knows what to listen to

December 11, 2017
How is it that we are able—without any noticeable effort—to listen to a friend talk in a crowded café or follow the melody of a violin within an orchestra?

Updated brain cell map connects various brain diseases to specific cell types

December 11, 2017
Researchers have developed new single-cell sequencing methods that could be used to map the cell origins of various brain disorders, including Alzheimer's, Parkinson's, schizophrenia and bipolar disorder.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.