Researchers pinpoint exactly where each building block sits in HIV

November 3, 2014, European Molecular Biology Laboratory
Surprisingly, the building blocks in immature HIV (centre) are arranged differently from those of immature Mason-Pfizer Monkey Virus (left). To form the mature virus, HIV’s building blocks take on yet another arrangement (right). Credit: EMBL/F.Schur

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and collaborators from Heidelberg University, in the joint Molecular Medicine Partnership Unit, have obtained the first structure of the immature form of HIV at a high enough resolution to pinpoint exactly where each building block sits in the virus. The study, published online today in Nature, reveals that the building blocks of the immature form of HIV are arranged in a surprising way.

"The structure is definitely different from what we'd expected," says John Briggs from EMBL, who led the work. "We assumed that retroviruses like HIV and Mason-Pfizer Monkey Virus would have similar structures, because they use such similar building blocks, but it turns out that their immature forms are surprisingly different from each other. At this point, we don't really know why."

Briggs and colleagues used cryo-electron microscopy to study the protein lattice that surrounds the virus' genetic material. After infecting one of the cells in our immune system, HIV replicates, producing more copies of itself, each of which has to be assembled from a medley of viral and cellular components into an immature virus. This is the form that leaves the cell. The protein that make up the virus are then rearranged into the virus' mature form, which can infect other cells.

The first cryo-electron microscopy images of immature HIV, obtained at EMBL in the 1990s, surprised researchers by showing that the virus did not have a regular symmetrical structure, as had been assumed. That meant it was going to be difficult to get a detailed picture of the structure of its protein lattice. Two decades on, by optimising both how data is collected at the microscope and how it is analysed, Florian Schur, a PhD student in Briggs' lab, has now achieved an unprecedentedly detailed structure.

With this structure in hand, scientists have a basis to probe further. They can use it to decide where to focus efforts for achieving the even greater detail needed to explore potential drug targets, for instance. It will also enable researchers to understand how mutations might influence how the virus assembles. And the techniques themselves can be applied to a variety of questions.

"This approach offers so many possibilities," says Schur. "You can look at other viruses, of course, but also at complexes and proteins inside cells, with a whole new level of detail."

In future, the EMBL scientists will use the approach to look at other viruses and at the vesicles that transport material inside cells. They also aim to push the techniques even further, to allow them to see other parts of the viral proteins that are currently beyond their reach, but which they suspect play an important role in HIV maturation.

"In the long term, we'd also like to investigate how drugs which are known to inhibit assembly and maturation actually work," Briggs concludes.

Explore further: Scientists believe they can identify which HIV strains cause infection

More information: Schur, F.K.M., Hagen, W.J.H., Rumlová, M., Ruml, T., Müller, B., Kräusslich, H. & Briggs, J.AG. "The structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution." Published online in Nature, 2 November 2014. DOI: 10.1038/nature13838.

Related Stories

Scientists believe they can identify which HIV strains cause infection

July 21, 2014
(Medical Xpress)—HIV-infected people carry many different HIV viruses and all have distinct personalities—some much more vengeful and infectious than others.

'Transformer' protein makes different sized transport pods

May 25, 2012
These spheres may look almost identical, but subtle differences between them revealed a molecular version of the robots from Transformers. Each sphere is a vesicle, a pod that cells use to transport materials between different ...

Recommended for you

Roadmap reveals shortcut to recreate key HIV antibody for vaccines

December 11, 2018
HIV evades the body's immune defenses through a multitude of mutations, and antibodies produced by the host's immune system to fight HIV also follow convoluted evolutionary pathways that have been challenging to track.

Eliminating the latent reservoir of HIV

December 7, 2018
A new study suggests that a genetic switch that causes latent HIV inside cells to begin to replicate can be manipulated to completely eradicate the virus from the human body. Cells harboring latent HIV are "invisible" to ...

New research highlights why HIV-infected patients suffer higher rates of cancer

December 5, 2018
AIDS patients suffer higher rates of cancer because they have fewer T-cells in their bodies to fight disease. But new research examines why HIV-infected patients have higher rates of cancer—among the leading causes of death ...

Focus on resistance to HIV offers insight into how to fight the virus

November 30, 2018
Of the 40 million people around the world infected with HIV, less than one per cent have immune systems strong enough to suppress the virus for extended periods of time. These special immune systems are known as "elite controllers." ...

Patients with rare natural ability to suppress HIV shed light on potential functional cure

November 27, 2018
Researchers at Johns Hopkins have identified two patients with HIV whose immune cells behave differently than others with the virus and actually appear to help control viral load even years after infection. Moreover, both ...

Scientists unveil promising new HIV vaccine strategy

November 26, 2018
A new candidate HIV vaccine from Scripps Research surmounts technical hurdles that stymied previous vaccine efforts, and stimulates a powerful anti-HIV antibody response in animal tests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.