Immune system promotes digestive health by fostering community of 'good' bacteria

January 22, 2015, University of Utah Health Sciences
A healthy community of 'good' bacteria in the gut promotes digestive health. Good bacteria (red) lives in close proximity to intestinal tissue (blue). Credit: June Round

As many as 1.4 million Americans suffer from uncomfortable abdominal cramping and diarrhea that come with ulcerative colitis and Crohn's disease. These conditions, collectively known as inflammatory bowel disease (IBD), are associated with an imbalance among the thousands of species of "good" bacteria that inhabit the gut. A University of Utah study published on Jan. 22, 2015, in Cell Host and Microbe demonstrates that mice deficient for a component of the immune system, a protein called MyD88, have an imbalanced gut bacterial community - with some species dominating over others - and are more susceptible to contracting a severe IBD-like illness. Further, fecal transplants from healthy donors alleviate IBD symptoms in these mice.

The results show that the immune system encourages growth of a healthy community of "good" bacteria that is important for digestive health. This perspective on is in contrast to its best known role as the first line of defense in the fight against pathogens, including invasive bacteria.

"Our work highlights that the immune system shapes the composition of bacterial communities in the intestine," says senior author June Round, Ph.D., assistant professor of pathology at the University of Utah School of Medicine. "This interaction is important because it's becoming more and more clear that resident microbes are very important for our health."

Considering that some people with IBD have mutations in genes that are part of a MyD88-controlled pathway, fecal transplantation - which involves collecting and processing stool from a healthy donor, and delivering it into a recipient's gut - might help to ameliorate disease in these people, according to Round.

Loss of MyD88 disturbs the microbial community because it disrupts production of IgA. This class of antibody works like a gatekeeper that controls which types of bacteria, and how many, are allowed to inhabit the gut. By performing inventories of total gut bacteria compared to species that bind IgA, the scientists determined that without MyD88, IgA failed to recognize species that it can otherwise.

(Left) When the immune system functions properly (MyD88 is active, green), IgA antibodies bind multiple species of bacteria, keeping the numbers and types of 'good' bacteria that inhabit the gut under control. (Right) When the immune system is disrupted (MyD88 is inactive, gray), IgA binds bacteria less effectively, and the bacterial community becomes imbalanced, jeopardizing digestive health. Credit: Charisse Peterson

The work not only demonstrates that a balanced microbial community promotes digestive health, but that it also shapes the host's immune system. Mice raised in a sterile, germ-free environment have a faulty immune system, a defect that can be fixed if they are fed bacterial components, TLR2 agonists, that activates the immune system. The rescue does not work in mice deficient for MyD88, demonstrating again that the protein is key to interpreting communications between microbes and the immune system.

"There is a conversation between our immune system and our resident bacteria," explains Round. "The microbes can send signals that tell our immune system how to develop and in turn our immune system can shape what types of microbes live on our body."

The dependency of host health on has made the conversation a necessity. In response to demand, the has adapted from a system designed to fight the body's invaders to one that also nurtures a harmonious relationship with the body's peaceful inhabitants.

Explore further: In the gut, immunity is a two-way street

More information: MyD88 Signaling in T Cells Directs IgA-Mediated Control of the Microbiota to Promote Health. Jason L. Kubinak, Charisse Petersen, W. Zac Stephens, Ray Soto, Erin Bake, Ryan M. O'Connell and June L. Round. Cell Host and Microbe, Jan. 22, 2015

Related Stories

In the gut, immunity is a two-way street

July 10, 2014
In recent years, it has become increasingly clear that many diseases are triggered or maintained by changes in bacterial communities in the gut. However, the general view up into now has been rather simple: bacteria stimulate ...

Team identifies possible bacterial drivers of inflammatory bowel diseases

August 28, 2014
Yale University researchers have identified a handful of bacterial culprits that may drive inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis, using patients' own intestinal immune responses ...

People may inherit 'gut' bacteria that cause Crohn's disease and ulcerative colitis

December 16, 2014
A new study by an international team of researchers shows for the first time that people may inherit some of the intestinal bacteria that cause Crohn's disease and ulcerative colitis, collectively know as inflammatory bowel ...

Gut microbes trigger autoimmune disease later in life in mice

January 19, 2015
Researchers have revealed that the colonization of the gut of young mice by certain types of bacteria can lead to immune responses later in life that are linked to disease. Increases in the levels of segmented filamentous ...

Immune system compensates for 'leaky gut' in inflammatory bowel disease susceptibility

September 13, 2012
New research could clarify how inflammatory bowel diseases (IBD), conditions that include ulcerative colitis and Crohn's disease, are triggered and develop.

Research explains how we live in harmony with friendly gut bacteria

January 9, 2015
Stability in the composition of the hundred trillion bacterial cells in the human gastrointestinal tract is crucial to health, but scientists have been perplexed how our microbiota withstands an onslaught of toxins, dietary ...

Recommended for you

'Icebreaker' protein opens genome for T cell development, researchers find

February 20, 2018
Almost all cells in the human body have identical DNA sequences, yet there are 200-plus cell types with different sizes, shapes, and chemical compositions. Determining what parts of the genome are read to make protein and ...

Preventive treatment for peanut allergies succeeds in study

February 20, 2018
The first treatment to help prevent serious allergic reactions to peanuts may be on the way. A company said Tuesday that its daily capsules of peanut powder helped children build tolerance in a major study.

Infection site affects how a virus spreads through the body

February 20, 2018
A person is more likely to get infected by HIV through anal intercourse than vaginal, but no one knows quite why. A new study by scientists at the Gladstone Institutes shows that infection sites could affect the immune system's ...

Unexpected immune activation illustrated in the cold

February 19, 2018
Researchers at Utrecht University and Leiden University Medical Center, the Netherlands, have imaged an important immune system on-switch. Their novel technical approach has led to the discovery of two ways in which the immune ...

Immune signature predicts asthma susceptibility

February 16, 2018
Asthma is a chronic inflammatory disease driven by the interplay of genetics, environmental factors and a diverse cast of immune cells. In their latest study, researchers at La Jolla Institute for Allergy and Immunology (LJI) ...

Scientists identify immune cascade that fuels complications, tissue damage in chlamydia infections

February 13, 2018
Closing a critical gap in knowledge, Harvard Medical School scientists have unraveled the immune cascade that fuels tissue damage and disease development in chlamydia infection—the most common sexually transmitted disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.