Researchers describe the modular anatomical structure of the human head

February 18, 2015, Asociacion RUVID
Human head

A new mathematical analysis tool developed by researchers from the Theoretical Biology Group at the Cavanilles Institute of Biodiversity and Evolutionary Biology of the University of Valencia has allowed a deeper understanding of the anatomy of the human head thanks to describing the skull as an extended network structured in ten modules. The results of this study led by researcher Diego Rasskin Gutman have been published in the latest issue of the Scientific Reports journal, published by Nature.

Scientists at the University of Valencia have developed a research methodology called Anatomical Network Analysis (AnNA), based on network analysis mathematical tools for studying anatomy. More precisely, this method has been developed over the last six years as a result of the findings of the doctoral thesis by Borja Altava Esteve, under the supervision of Rasskin. Thanks to the high degree of abstraction of AnNa, researchers have been able to conduct several studies of both the human skeleton and of the rest of terrestrial vertebrates, especially as regards the development and evolution of the skull.

Integration of muscles and cartilages

On this occasion, for the first time ever, the Theoretical Biology Group added the head muscles and cartilages to the study of the skull bones (including the inner ear bones, the jaw and the bones that connect with head muscles, such as cervical vertebrae and clavicles).

This way, "we found that when analysing the head as a complex system defined by 181 nodes —including bones, muscles and cartilage, and excluding superficial muscles— and 412 physical contacts —sutures and cartilaginous joints—, the system can be subdivided into ten well-defined modules", says Diego Rasskin.

The Faculty of Medicine at Howard University in Washington D.C. (USA) and the University of Saskatchewan (Canada) have also collaborated in the study by contributing muscular data. Until the publication of this article, the applications of AnNa focused exclusively on bones. As Rasskin explains, each skull "generated a network model in which each was represented as the network node and each physical articulation (contact), as a connection. Thus, each skull was modelled as a 0-1 matrix with each connection being a 1. This matrix served to analyse the network attributes, which could in turn be compared to other generic network properties".

Diego Rasskin
Developmental semi-independence

One of the important findings of this research is also that the functional and developmental dependences of the head as a whole cannot be separated, but are coupled in these ten modules described by scientists at the University of Valencia. "This modular structure allows each module to evolve semi-independently, i.e., changes in one of them has a minimal effect on others", says Rasskin.

By using AnNa, which enables the analysis of bones and muscles at the same time, new cranial functional dependences have been uncovered, because muscles —associated to movements— link separate bones. For example, as the researcher points out, the lower jaw / inner ear module shows dependences between bones associated with masticatory muscles and which would not associate otherwise (jaw to parietal, temporal and occipital) as well as inner ear bones.

Moreover, modules "show left/right independence of orofacial muscles (mouth and face) from the upper face muscles. This allows greater flexibility in facial expression for we are able to move on either side separately", he explains.

Explore further: Oxygen uptake in respiratory muscles differs between men and women during exercise

More information: Borja Esteve-Altava, Rui Diogo, Christopher Smith, Julia C. Boughner & Diego Rasskin-Gutman (2015) "Anatomical networks reveal the musculoskeletal modularity of the human head." Scientific Reports 5, Article number: 8298. DOI: 10.1038/srep08298

Related Stories

Oxygen uptake in respiratory muscles differs between men and women during exercise

February 3, 2015
Muscles necessary for breathing need a greater amount of oxygen in women than in men, according to a study published today in The Journal of Physiology.

Recommended for you

Law professor suggests a way to validate and integrate deep learning medical systems

December 13, 2018
University of Michigan professor W. Nicholson Price, who also has affiliations with Harvard Law School and the University of Copenhagen Faculty of Law, suggests in a Focus piece published in Science Translational Medicine, ...

Exercise-induced hormone irisin triggers bone remodeling in mice

December 13, 2018
Exercise has been touted to build bone mass, but exactly how it actually accomplishes this is a matter of debate. Now, researchers show that an exercise-induced hormone activates cells that are critical for bone remodeling ...

Faster test for Ebola shows promising results in field trials

December 13, 2018
A team of researchers with members from the U.S., Senegal and Guinea, in cooperation with Becton, Dickinson and Company (BD), has developed a faster test for the Ebola virus than those currently in use. In their paper published ...

Drug targets for Ebola, Dengue, and Zika viruses found in lab study

December 13, 2018
No drugs are currently available to treat Ebola, Dengue, or Zika viruses, which infect millions of people every year and result in severe illness, birth defects, and even death. New research from the Gladstone Institutes ...

Pain: Perception and motor impulses arise in brain independently of one another

December 13, 2018
Pain is a negative sensation that we want to get rid of as soon as possible. In order to protect our bodies, we react by withdrawing the hand from heat, for example. This action is usually understood as the consequence of ...

Researchers give new insight to muscular dystrophy patients

December 13, 2018
New research by University of Minnesota scientists has revealed the three-dimensional structure of the DUX4 protein, which is responsible for the disease, facioscapulohumeral muscular dystrophy (FSHD). Unlike the majority ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.