Researchers create 'Wikipedia' for neurons

March 30, 2015 by Jocelyn Duffy, Carnegie Mellon University
Researchers create 'Wikipedia' for neurons

The decades worth of data that has been collected about the billions of neurons in the brain is astounding. To help scientists make sense of this "brain big data," researchers at Carnegie Mellon University have used data mining to create http://www.neuroelectro.org, a publicly available website that acts like Wikipedia, indexing physiological information about neurons.

The site will help to accelerate the advance of by providing a centralized resource for collecting and comparing data on neuronal function. A description of the data available and some of the analyses that can be performed using the site are published online by the Journal of Neurophysiology.

The neurons in the brain can be divided into approximately 300 different types based on their physical and functional . Researchers have been studying the function and properties of many different types of neurons for decades. The resulting data is scattered across tens of thousands of papers in the scientific literature. Researchers at Carnegie Mellon turned to to collect and organize these data in a way that will make possible, for the first time, new methods of analysis.

"If we want to think about building a brain or re-engineering the brain, we need to know what parts we're working with," said Nathan Urban, interim provost and director of Carnegie Mellon's BrainHubSM neuroscience initiative. "We know a lot about neurons in some areas of the brain, but very little about neurons in others. To accelerate our understanding of neurons and their functions, we need to be able to easily determine whether what we already know about some neurons can be applied to others we know less about."

Shreejoy J. Tripathy, who worked in Urban's lab when he was a graduate student in the joint Carnegie Mellon/University of Pittsburgh Center for the Neural Basis of Cognition (CNBC) Program in Neural Computation, selected more than 10,000 published papers that contained physiological data describing how neurons responded to various inputs. He used text mining algorithms to "read" each of the papers. The text mining software found the portions of each paper that identified the type of neuron studied and then isolated the electrophysiological data related to the properties of that neuronal type. It also retrieved information about how each of the experiments in the literature was completed, and corrected the data to account for any differences that might be caused by the format of the experiment. Overall, Tripathy, who is now a postdoc at the University of British Columbia, was able to collect and standardize data for approximately 100 different types of neurons, which he published on the website neuroelectro.org.

Since the data on the website was collected using , the researchers realized that it was likely to contain errors related to extraction and standardization. Urban and his group validated much of the data, but they also created a mechanism that allows site users to flag data for further evaluation. Users also can contribute new data with minimal intervention from site administrators, similar to Wikipedia.

"It's a dynamic environment in which people can collect, refine and add data," said Urban, who is the Dr. Frederick A. Schwertz Distinguished Professor of Life Sciences and a member of the CNBC. "It will be a useful resource to people doing neuroscience research all over the world."

Ultimately, the website will help researchers find groups of neurons that share the same physiological properties, which could provide a better understanding of how a neuron functions. For example, if a researcher finds that a type of neuron in the brain's neocortex fires spontaneously, they can look up other neurons that fire spontaneously and access research papers that address this type of neuron. Using that information, they can quickly form hypotheses about whether or not the same mechanisms are at play in both the newly discovered and previously studied neurons.

To demonstrate how neuroelectro.org could be used, the researchers compared the electrophysiological data from more than 30 neuron types that had been most heavily studied in the literature. These included in the hippocampus, which are responsible for memory, and in the midbrain, thought to be responsible for reward-seeking behaviors and addiction, among others. The site was able to find many expected similarities between the different types of neurons, and some similarities that were a surprise to researchers. Those surprises represent promising areas for future research.

In ongoing work, the Carnegie Mellon researchers are comparing the data on neuroelectro.org with other kinds of data, including data on neurons' patterns of gene expression. For example, Urban's group is using another publicly available resource, the Allen Brain Atlas, to find whether groups of with similar electrical function have similar gene expression.

"It would take a lot of time, effort and money to determine both the physiological properties of a neuron and its ," Urban said. "Our website will help guide this research, making it much more efficient."

Explore further: Neuroscientists use statistical model to draft fantasy teams of neurons

Related Stories

Neuroscientists use statistical model to draft fantasy teams of neurons

April 29, 2013
This past weekend teams from the National Football League used statistics like height, weight and speed to draft the best college players, and in a few weeks, armchair enthusiasts will use similar measures to select players ...

Modeling the brain's energy

March 25, 2015
Scientists at EPFL, KAUST and UCL have created the first computer model of the metabolic coupling between neuron and glia, an essential feature of brain function. Confirming previous experimental data, the model is now being ...

Neuroscientists show how neurons respond to sequences of familiar objects

August 24, 2014
The world grows increasingly more chaotic year after year, and our brains are constantly bombarded with images. A new study from Center for the Neural Basis of Cognition (CNBC), a joint project between Carnegie Mellon University ...

Neuroscience and big data: How to find simplicity in the brain

August 24, 2014
Scientists can now monitor and record the activity of hundreds of neurons concurrently in the brain, and ongoing technology developments promise to increase this number manyfold. However, simply recording the neural activity ...

Sea slug provides new way of analyzing brain data

March 26, 2015
Scientists say our brains may not be as complicated as we once thought - and they're using sea slugs to prove it.

Recommended for you

Ritalin drives greater connection between brain areas key to memory, attention

December 13, 2018
There's a reason so many children are prescribed methylphenidate, better known by the trade name Ritalin: it helps kids quell attention and hyperactivity problems and sit still enough to focus on a school lesson.

Attention, please! Anticipation of touch takes focus, executive skills

December 12, 2018
Anticipation is often viewed as an emotional experience, an eager wait for something to happen.

Study highlights potential benefits of continuous EEG monitoring for infant patients

December 12, 2018
A recent retrospective study evaluating continuous electroencephalography (cEEG) of children in intensive care units (ICUs) found a higher than anticipated number of seizures. The work also identified several conditions closely ...

The importins of anxiety

December 11, 2018
According to some estimates, up to one in three people around the world may experience severe anxiety in their lifetime. In a study described today in Cell Reports, researchers at the Weizmann Institute of Science have revealed ...

How returning to a prior context briefly heightens memory recall

December 11, 2018
Whether it's the pleasant experience of returning to one's childhood home over the holidays or the unease of revisiting a site that proved unpleasant, we often find that when we return to a context where an episode first ...

Neurons in the brain work as a team to guide movement of arms, hands

December 11, 2018
The apparent simplicity of picking up a cup of coffee or turning a doorknob belies the complex sequence of calculations and processes that the brain must undergo to identify the location of an item in space, move the arm ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.