Restoring cellular energy signals may treat mitochondrial diseases in humans

April 15, 2015, Children's Hospital of Philadelphia
In this mutant worm, about 1/20 of an inch long, green flourescence marks areas of biological stress from malfunctioning mitochondria. Credit: The Children's Hospital of Philadelphia

Rooted in malfunctions in the tiny power plants that energize our cells, mitochondrial disorders are notoriously complex and variable, with few effective treatments. Now, novel findings in microscopic worms may hold great promise for children and adults with mitochondrial disorders. By using existing human drugs to improve metabolism and restore shortened lifespans in these laboratory animals, scientists have set the stage for human clinical trials of possible innovative therapies for mitochondrial disease.

Mitochondria are present in up to several hundred copies in nearly every cell, but when they don't work properly, they impair many systems in the body by short-circuiting normal energy flow. While primary mitochondrial disorders are individually rare, hundreds of them exist, collectively affecting at least one in 5,000 individuals. Abnormal mitochondrial functions also play important roles in common conditions such as type 2 diabetes, epilepsy, Alzheimer's disease, and even human aging.

"This work carries strong promise for identifying effective therapies for ," said study leader Marni J. Falk, M.D., director and attending physician in the Mitochondrial-Genetic Disease Clinic at The Children's Hospital of Philadelphia (CHOP). "The drugs we used in this study improve cellular signaling in ways that could directly benefit patients. As all but one of the drugs are currently prescribed for other diseases, they're already available to now test in clinical trials in patients with mitochondrial disease."

Falk and colleagues published their study online March 3 in the journal Mitochondrion.

The current research focuses on the respiratory chain, a set of five enzyme complexes that together are a crucial site of energy production inside mitochondria. In respiratory chain (RC) defects, common culprits in many , cells fail to properly produce energy. The most common site of RC dysfunction is complex I, a group of proteins that normally generates a key metabolic product, nicotinamide adenine dinucleotide (NAD+).

NAD+ normally regulates hundreds of other chemical reactions within the cell. When genetic mutations disrupt complex I proteins and the metabolic conversion of NADH to NAD+, patients may suffer often-severe energy shortages in the heart, brain, eyes, muscles and many other parts of the body.

In the current study, Falk and colleagues studied with mutations that disrupt their mitochondria and make them a useful laboratory model for investigating mitochondrial disease. Using these nematodes, called Caenorhabditis elegans, Falk's research laboratory has done extensive studies to understand mitochondrial disease and potential therapies.

The researchers tested a series of drugs currently used to treat patients with diabetes or lipid disorders. One drug, nicotinic acid, is a form of niacin (vitamin B3) that has been used for decades to treat patients who have high triglycerides in their blood.

The C. elegans worms had mutations that directly impaired their complex I function and shortened their lifespans. Nicotinic acid restored the worms' lifespans to that of normal animals. It also restored the levels of NADH, enabling it to play its crucial role of initiating the transport of electrons in the RC that is necessary to produce cellular energy, as well as regulating many other cellular processes.

The team showed that other available human drugs also improved key metabolite levels in C. elegans. "In contrast to research that aims to repair defective mitochondria, we are bypassing the damaged mitochondria and focusing instead on how cells respond to mitochondrial problems," said Falk. "We're restoring the ratio of critical metabolic precursors and products that control signaling pathways, thereby improving overall cellular health in respiratory chain diseases."

Mitochondrial diseases, she added, are highly complex, but her team's series of nematode studies have revealed fundamental conserved processes that are disrupted in mitochondrial disease. The study team carefully deciphered many of the biological mechanisms at work, marked by changes in oxidant levels, genome expression patterns and other major physiological effects. "Although some specific mechanistic details may differ, we're looking at how the effects of different drugs may converge to promote an organism's health and survival," she said.

Falk and colleagues are now planning a pilot clinical trial in children with complex I deficiencies to determine whether the effects seen in the animals will translate to meaningful clinical benefits in patients. Ultimately, she expects the complexity of mitochondrial biology will dictate that effective treatments will require combination therapies specific to restoring signaling pathways that are commonly disrupted in major subtypes of mitochondrial disease. "We're enthusiastic that we have reached a major threshold on the path toward bringing important new therapies to a very challenging group of diseases," she added.

Explore further: Central signaling response found in mitochondrial energy diseases

More information: Shana McCormack et al, "Pharmacologic targeting of sirtuins and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans," Mitochondrion, published online March 3, 2015 and in May 2015 print issue. doi.org/10.1016/j.mito.2015.02.005

Related Stories

Central signaling response found in mitochondrial energy diseases

July 24, 2013
Researchers have identified a master network of signaling molecules that acts like a "fuse box" to regulate the cellular effects of defective energy flow in mitochondrial respiratory chain diseases—a diverse set of difficult-to-treat ...

Animal results may pave way to treating rare mitochondrial diseases in children

May 19, 2011
A human drug that both prevents and cures kidney failure in mice sheds light on disabling human mitochondrial disorders, and may represent a potential treatment in people with such illnesses.

Energizing sick mitochondria with vitamin B3

April 7, 2014
Vitamins B have recently been turned out to be potent modifiers of energy metabolism, especially the function of mitochondria.

Study reveals possible treatment for diseases caused by Mitofusin 2 deficiency

February 16, 2015
Researchers have discovered a novel role for Mitofusin 2, and the findings may point to a new treatment for patients with diseases caused by loss of the mitochondrial protein. The study appears in The Journal of Cell Biology ...

Scientists create one-step gene test for mitochondrial diseases

January 29, 2013
More powerful gene-sequencing tools have increasingly been uncovering disease secrets in DNA within the cell nucleus. Now a research team is expanding those rapid next-generation sequencing tests to analyze a separate source ...

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.