Experts map surgical approaches for auditory brainstem implantation

May 21, 2015

A technique called auditory brainstem implantation can restore hearing for patients who can't benefit from cochlear implants. A team of US and Japanese experts has mapped out the surgical anatomy and approaches for auditory brainstem implantation in the June issue of Operative Neurosurgery.

Dr. Albert L. Rhoton, Jr., and colleagues of University of Florida, Gainesville, and Fukuoka University, Japan, performed a series of meticulous dissections to demonstrate and illustrate to auditory brainstem implant placement. Their article shares exquisitely detailed anatomic color photographs, along with step-by-step descriptions of two alternative routes for neurosurgeons performing these demanding implant procedures.

Anatomy and Approaches for Auditory Brainstem Implantation

Auditory brainstem can restore varying degrees of hearing to patients with "retrocochlear" hearing loss. These patients have deafness caused by damage to the cochlear nerves—sometimes called the acoustic or auditory nerves—which transmit sound information from the to the brain. The cochlear nerve damage most commonly results from brain tumors associated with a genetic condition called neurofibromatosis type 2 (NF2).

Auditory brainstem implants are similar in principle to the more commonly placed cochlear implant, used in patients with damage to the cochlea—part of the inner ear. Because of the need to place the implant and electrodes in the brainstem, rather than the inner ear, the surgery required for auditory brainstem implantation is much more complex.

In a series of ten cadaver brainstem dissections, the researchers explored the anatomy of the region that the neurosurgeon must navigate to perform auditory brainstem implantation. They also mapped out the best neurosurgical approaches, both for surgery to remove the tumors and for auditory brainstem implant placement.

Based on their findings, Dr. Rhoton and colleagues detail two surgical approaches: a "translabyrinthine" and a "retrosigmoid" approach. They outline a step-by-step route for both approaches, designed to provide safe access to the area while minimizing trauma to the brainstem and surrounding structures. The authors highlight the value of using endoscopes to help in visualizing and accessing the target area for implant placement.

More than 1,000 auditory brainstem implant procedures have been performed worldwide so far. The procedure was previously approved only for patients with NF2 aged 12 years or older. Recently, clinical trials were approved for children with congenital malformations or other causes of retrocochlear deafness.

Minimizing damage to the brainstem and associated blood vessels appears to be a critical factor in achieving good speech recognition after auditory brainstem implantation. The hearing results are also better in with a shorter duration of deafness.

Dr. Rhoton and colleagues hope that their descriptions and illustrations will help to increase understanding of the anatomy and surgical approaches to auditory brainstem implantation, contributing useful hearing to adults and children with NF2 and other causes of retrocochlear deafness.

Explore further: Researchers explore 3-D microsurgical anatomy of brainstem

More information: "Auditory Brainstem Implantation: Anatomy and Approaches" DOI: 10.1227/NEU.0000000000000736

Related Stories

Researchers explore 3-D microsurgical anatomy of brainstem

December 1, 2014

A study using intricate fiber dissection techniques provides new insights into the deep anatomy of the human brainstem—and helps to define "safe entry zones" for neurosurgeons performing brainstem surgery, according to ...

Researcher observes active role of auditory neurons

April 1, 2015

Cells in the brainstem that underlie sound localization, compare signals at the two ears and can pause while doing so. This was shown by researchers at the Laboratory for Auditory Neurophysiology in Leuven, who were the first ...

Recommended for you

3-D bioprinted human cartilage cells can be implanted

March 23, 2017

Swedish researchers at Sahlgrenska Academy and Chalmers University of Technology have successfully induced human cartilage cells to live and grow in an animal model, using 3-D bioprinting. The results will move development ...

MRI-powered mini-robots could offer targeted treatment

March 7, 2017

Invasive surgical techniques - cutting through the breastbone for open heart surgery or making a large incision to inspect an abdominal tumor - allow physicians to effectively treat disease but can lead to sometimes serious ...

New method rescues donor organs to save lives

March 6, 2017

A multidisciplinary team led by Gordana Vunjak-Novakovic, Mikati Foundation Professor of Biomedical Engineering and Medical Sciences at Columbia Engineering, and Matt Bacchetta, associate professor of surgery at Columbia ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.