Can social isolation fuel epidemics?

July 21, 2015
Can social isolation fuel epidemics?

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according to two SFI researchers, and the consequences could reach far beyond epidemiology.

In a paper published in the July 20 early edition of the Proceedings of the National Academy of Sciences, Laurent Hébert-Dufresne and Benjamin Althouse show that when two separate diseases interact with each other, a population clustered into relatively isolated groups can lead to epidemics that spread like wildfire.

"We thought we understood how clustering works," Hébert-Dufresne says,"but it behaves exactly opposite to what we thought once interactions are added in. Our intuition was totally wrong."

At the heart of the new study are two effects that have had a lot of attention in recent years—social clustering and coinfection, in which one disease can change the infection dynamics of another—but haven't been studied together. That, Hébert-Dufresne and Althouse say, turns out to be a major omission

Ordinarily, the pair say, clustering limits outbreaks. Maybe kids in one preschool get sick, for example, but since those kids don't see kids from other preschools as often, they're not likely to spread the disease very far. Coinfection often works the other way. Once someone is sick with, say, pneumococcal pneumonia, they're more likely than others to come down with the flu, lowering the bar for an epidemic of both diseases.

But put the effects together, Hébert-Dufresne and Althouse discovered, and you get something that is more—and different—than the sum of its parts. While clustering works to prevent single-disease epidemics, interactions between diseases like pneumonia and the flu help keep each other going within a social group long enough that one of them can break out into other clusters, becoming a foothold for the other—or perhaps a spark in a dry forest. Both diseases, Althouse says, "can catch fire." The end result is a larger, more rapidly developing, epidemic than would otherwise be possible.

That conclusion has immediate consequences for , whose worst-case scenarios might be different or even tame compared with the outbreaks Hébert-Dufresne and Althouse hypothesize. But there are equally important consequences for network scientists and complex systems researchers, who often think in epidemiological terms. Two ideas, for example, might interact with each other so that both spread more rapidly than they would on their own, just as diseases do.

Now that they've realized the importance of such interactions, "we hope to take this work in new and different directions in epidemiology, social science, and the study of dynamic networks," Althouse says. "There's great potential."

Explore further: Social dynamics beats penicillin in stopping syphilis outbreaks

More information: "Complex dynamics of synergistic coinfections on realistically clustered networks." PNAS 2015 ; published ahead of print July 20, 2015, DOI: 10.1073/pnas.1507820112

Related Stories

Social dynamics beats penicillin in stopping syphilis outbreaks

August 7, 2014
Syphilis, among the more pernicious sexually-transmitted infections, is on the rise; nearly 16,000 cases were reported in the U.S. in 2012, according to the Centers for Disease Control and Prevention (CDC).

How the Dengue virus circulates in the wild

February 20, 2014
Science has come a long way in containing infectious diseases over the past five decades. Despite this progress, the incidence of dengue fever has increased thirty-fold, with 390 million people infected annually worldwide.

Workshop gives web-based disease tracking a checkup

May 20, 2014
Web-based disease trackers like Google Flu Trends are supposed to revolutionize public health response to outbreaks, but how well do they actually work, and can they be made to work better? SFI Omidyar Fellows and epidemiologists ...

Whooping cough resurgence due to vaccinated people not knowing they are infectious?

June 24, 2015
Whooping cough has made an astonishing comeback, with 2012 seeing nearly 50,000 infections in the U.S. (the most since 1955), and a death rate in infants three times that of the rest of the population. The dramatic resurgence ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015
Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

Recommended for you

Anti-malaria drug shows promise as Zika virus treatment

November 17, 2017
A new collaborative study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) and UC San Diego School of Medicine has found that a medication used to prevent and treat malaria may also be effective ...

Decrease in sunshine, increase in Rickets

November 17, 2017
A University of Toronto student and professor have teamed up to discover that Britain's increasing cloudiness during the summer could be an important reason for the mysterious increase in Rickets among British children over ...

Scientists identify biomarkers that indicate likelihood of survival in infected patients

November 17, 2017
Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease.

Research team unlocks secrets of Ebola

November 16, 2017
In a comprehensive and complex molecular study of blood samples from Ebola patients in Sierra Leone, published today (Nov. 16, 2017) in Cell Host and Microbe, a scientific team led by the University of Wisconsin-Madison has ...

Study raises possibility of naturally acquired immunity against Zika virus

November 16, 2017
Birth defects in babies born infected with Zika virus remain a major health concern. Now, scientists suggest the possibility that some women in high-risk Zika regions may already be protected and not know it.

A structural clue to attacking malaria's 'Achilles heel'

November 16, 2017
Researchers from The Scripps Research Institute (TSRI) and PATH's Malaria Vaccine Initiative (MVI) have shed light on how the human immune system recognizes the malaria parasite though investigation of antibodies generated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.