Statisticians develop new two-cycle dose-finding method for personalized cancer treatments

August 10, 2015, American Statistical Association

A new technique developed by statisticians that is helping doctors optimize the dose of a new cancer treatment patients receive in phase I/ II clinical trials was presented today by Juhee Lee, assistant professor of applied mathematics and statistics at the University of California, Santa Cruz, during a session at the 2015 Joint Statistical Meetings (JSM 2015) in Seattle.

During a session titled Bayesian Dose-Finding in Two Treatment Cycles Based on the Joint Utility of Efficacy and Toxicity, Lee presented the "Optimal Two-Cycle Dose-Finding Design" she developed in collaboration with Peter F. Thall, professor of biostatistics at The University of Texas MD Anderson Cancer Center in Houston; Peter Mueller, professor of mathematics at The University of Texas at Austin; and Yuan Ji, director of the Program for Computational Genomics and Medicine Research Institute at NorthShore University Health System in Chicago.

When a promising new experimental anticancer treatment is developed, the only way to determine how it affects humans is to use it to treat actual cancer . To establish an , a phase I/II clinical trial is conducted, during which a sequence of small cohorts of two to three patients are given varying doses of the experimental treatment. When the clinical outcomes of each cohort are observed, their data are added to the accumulated dose-outcome data from all previous patients and this data is used to choose the best dose for the next cohort. When the phase I/II trial is completed, the final best dose is selected to treat future patients.

Although the notion of dose-finding assumes there is a single dose administered to each patient, this is not always the case in reality. "Medical treatment often involves multiple cycles of therapy. Physicians routinely choose a patient's treatment in each cycle adaptively based on the patient's history of treatments and . In such settings, a patient's therapy is not one treatment, but rather a sequence of treatments that each is chosen using an adaptive algorithm of the general form 'observe, treat, observe, treat, and so forth,'" explained Lee.

Most clinical trial designs do not account for the multi-stage treatment regimens used by the physicians who treat patients during the trial. Instead, conventional trial designs consider only the initial treatments—as if each patient's outcomes are due to the first cycle of treatment—and disregard the treatment given to the patient in the second cycle.

In a dose-finding trial, each new patient's first dose—given in cycle 1 of treatment—is chosen using so-called "adaptive" rules based on results that have been observed in earlier trial patients. In conventional designs, the rules disregard the patient's cycle 1 dose and outcomes when they choose the patient's cycle 2 dose. As a result, the physician must choose each patient's cycle 2 dose informally, based on his or her intuition. Unfortunately, when making treatment decisions in multiple stages, using intuition can lead to bad decision-making by even highly experienced physicians.

The Optimal Two-Cycle Dose-Finding Design was motivated by this problem, which is experienced frequently in early-phase of potential new anticancer agents. Phase I/II establish each new patient's dose based on good outcomes—called "treatment efficacy"—such as tumor shrinkage as well as bad outcomes such as "toxicity."

This new dose-finding design is the first to deal with the problem of optimizing each patient's dose levels in two cycles in phase I/II cancer clinical trials. Extensive computer simulations have shown the two-cycle design often is 30% to 35% better than conventional methods in terms of how well it performs in choosing the best dose levels for patients.

Lee presented an example of how the two-stage design might work in practice. In a trial of five dose levels, suppose during the trial a patient is given dose level 4 in cycle 1 and their outcome is toxicity either with or without tumor shrinkage. The optimal two-cycle design would give that patient dose level 4 again in cycle 2, where the true probability of response is 65%. But due to the toxicity seen in cycle 1, a conventional trial design would de-escalate to a lower dose level—1, 2 or 3—for cycle 2, where the response probabilities are 20% to 45%, thus greatly reducing the chance the patient will achieve tumor shrinkage in cycle 2.

The Optimal Two-Cycle Dose-Finding Design is an example of "personalized medicine," because it uses each patient's cycle 1 data to help set a dose level to give that patient in the second cycle of treatment. The design is "adaptive" in two ways, since it also uses the dose-outcome data from other patients participating in the trial. The approach also can be used for dose-finding trials focused on diseases other than cancer, including rapid of stroke or optimizing successive doses of a drug to control pain following surgery, said Lee.

The ultimate goal of the new design methodology is to improve patient benefit by increasing the probability their cancer will be brought into remission while also controlling the risk of toxicity. This goal applies to the patients enrolled in the trial and future patients once the trial is completed and an optimal dose has been established, said Lee.

Explore further: Poliovirus study finds that less is more

Related Stories

Poliovirus study finds that less is more

June 1, 2015
A modified poliovirus therapy that is showing promising results for patients with glioblastoma brain tumors works best at a low dosage, according to the research team at Duke's Preston Robert Tisch Brain Tumor Center where ...

ASCO: JAK2 inhibitor ruxolitinib has promising efficacy in CMML patients

May 28, 2015
Chronic myelomonocytic leukemia (CMML) is a rare type of myelodysplastic, myeloproliferative neoplasm characterized by increased numbers of peripheral monocytes and less than 20 percent blasts. CMML has few treatment options ...

Olaparib and PI3K inhibitor BKM120 combination active against ovarian and breast cancer subtypes

April 22, 2015
Combination treatment with the poly ADP-ribose polymerase (PARP) inhibitor olaparib and the investigational phosphatidylinositol-3-kinase (PI3K) inhibitor BKM120 was safe and yielded evidence of clinical benefit for women ...

Coaching can halve radiation dose for pain physicians

June 8, 2015
(HealthDay)—Knowledge of and real-time coaching on scatter dose profiles can reduce the radiation dose received by physicians performing pain treatment procedures, according to a study published in the June issue of Pain ...

Designing a better clinical trial

July 31, 2015
A new study co-authored by a Department of Engineering researcher recommends an approach to clinical trials that includes tracking the influence of patients' behaviour on a treatment's benefits.

New immunotherapy yields long-lasting responses in some patients with advanced melanoma

April 20, 2015
A first-in-class immunotherapy called IMCgp100 yielded durable responses in patients with advanced cutaneous melanoma and those with advanced ocular melanoma, according to data from a phase I/IIa clinical trial presented ...

Recommended for you

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

3-D mammography detected 34% more breast cancers in screening

October 15, 2018
In traditional mammography screening, all breast tissue is captured in a single image. Breast tomosynthesis, on the other hand, is three-dimensional and works according to the same principle as what is known as tomography. ...

More clues revealed in link between normal breast changes and invasive breast cancer

October 15, 2018
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process—changes in mammary glands to accommodate breastfeeding—uses a molecular process believed ...

Cancer stem cells use 'normal' genes in abnormal ways

October 12, 2018
CDK1 is a "normal" protein—its presence drives cells through the cycle of replication. And MHC Class I molecules are "normal" as well—they present bits of proteins on the surfaces of cells for examination by the immune ...

Obesity linked to increased risk of early-onset colorectal cancer

October 12, 2018
Women who are overweight or obese have up to twice the risk of developing colorectal cancer before age 50 as women who have what is considered a normal body mass index (BMI), according to new research led by Washington University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.