Researchers decipher molecular basis of resistance in the African vector Anopheles funestus

November 2, 2015, Liverpool School of Tropical Medicine

Researchers at LSTM have shown the means by which one of the major species of mosquito responsible for transmitting malaria in Africa is becoming resistant to the insecticides used to treat the bednets which protect people from being bitten. This understanding can help tracking resistance and maintaining the effectiveness of tools used to control these mosquitoes.

In a paper published today in the journal PLoS Genetics a team of researchers from LSTM's Department of Vector Biology, collaborating with a colleague at the University of Liverpool, have deciphered the detailed molecular basis of resistance in the African vector Anopheles funestus.

LSTM's Dr Charles Wondji is senior author on the paper and a leading expert in vector genetics. He explained: "It is vital for the continued success of malaria control strategies that we understand, are able to identify and to anticipate the course of pyrethroid resistance in mosquitoes. Without genetic information on insecticide resistance genes and associated molecular markers this is extremely difficult.

He continued: "In this paper we demonstrated that allelic variation in major metabolic resistance genes (CYP6P9a and CYP6P9b) is the key mechanism driving pyrethroid resistance in An. funestus. Furthermore, we showed that three amino acid changes are the causative pyrethroid resistance markers. This information will allow the design of a DNA-based diagnostic assay for the early detection and tracking of resistance in the field as well as an ability to assess the true impact of resistance on malaria transmission and help ensure the continued effectiveness of pyrethroid-based interventions."

Despite the decrease in deaths from malaria in recent decades it remains a very serious public health burden in tropical world, with around 584,000 deaths worldwide in 2013 according to the World Health Organization (WHO), 90% of which were in Africa and mostly in children under the age of five. The scale up of the distribution of Long Lasting Insecticide treated Nets (LLINs) has massively contributed to the reduction in deaths in Africa. However, the success of control programmes is being threatened by growing to pyrethroid insecticides, the only class of insecticide approved by WHO for the use in bednets, among some of the mosquito populations that spread the disease.

Explore further: Professor Janet Hemingway, outlines 15 years of malaria interventions in Africa

More information: Sulaiman S. Ibrahim et al. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector, PLOS Genetics (2015). DOI: 10.1371/journal.pgen.1005618

Related Stories

Professor Janet Hemingway, outlines 15 years of malaria interventions in Africa

October 8, 2015
In an editorial in the weekly science journal Nature, LSTM's Director, Professor Janet Hemingway, looks at how the last 15 years of control measures have led to massive reductions in disease prevalence in Africa since 2000. ...

How does an insecticide treated bed net actually work?

September 1, 2015
New research from the Liverpool School of Tropical Medicine has revealed precisely how insecticide-treated bed nets are so effective against malaria mosquitoes. 

Recommended for you

Alcohol-related cirrhosis deaths skyrocket in young adults

July 18, 2018
Deaths from cirrhosis rose in all but one state between 1999-2016, with increases seen most often among young adults, a new study shows.

Childhood abuse linked to greater risk of endometriosis, study finds

July 17, 2018
Endometriosis, a painful condition that affects one in 10 reproductive-age women in the U.S., has been linked to childhood physical and sexual abuse, according to findings published today in the journal Human Reproduction.

Why men might recover from flu faster than women

July 17, 2018
Men may recover more quickly from influenza infections because they produce more of a key lung-healing protein, a study from scientists at Johns Hopkins Bloomberg School of Public Health suggests.

Hidden blood in feces may signal deadly conditions

July 17, 2018
(HealthDay)—Even if it's not visible to the naked eye, blood in the stool can be serious—a sign of a potentially fatal disease other than colon cancer, new research suggests.

Broadly acting antibodies found in plasma of Ebola survivors

July 17, 2018
Recent Ebola virus disease (EVD) outbreaks, including the 2013-2016 epidemic that ravaged West Africa and the 2018 outbreak in the Democratic Republic of the Congo, highlight the need for licensed treatments for this often-deadly ...

Scientists a step closer to predicting epidemics

July 13, 2018
Ecologists at the University of Georgia have taken an important step in their efforts to develop an early warning system for infectious disease outbreaks.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.