Targeting fat-tissue hormone may lead to type 2 diabetes treatment

December 23, 2015, Harvard T.H. Chan School of Public Health
A fatty acid–binding protein called aP2 has been linked to obesity, diabetes, and heart disease in humans. New research in mice shows that an antibody therapy blocking aP2 can help reverse some of the metabolic disturbances associated with type 2 diabetes. Credit: V. Altounian / Science Translational Medicine

A new study by researchers from Harvard T.H. Chan School of Public Health and colleagues describes the pre-clinical development of a therapeutic that could potentially be used to treat type 2 diabetes, fatty liver disease, and other metabolic diseases. The researchers developed an antibody that improves glucose regulation and reduces fatty liver in obese mice by targeting a hormone in adipose (fat) tissue called aP2 (also known as FABP4).

The study will be published online December 23, 2015 in Science Translational Medicine.

"The importance of this study is two-fold: first, demonstrating the importance of aP2 as a critical hormone in abnormal glucose metabolism, and secondly, showing that aP2 can be effectively targeted to treat diabetes and potentially other immunometabolic diseases," said Gökhan S. Hotamisligil, J.S. Simmons Professor of Genetics and Metabolism and chair of the Department of Genetics and Complex Diseases and the Sabri Ülker Center at Harvard Chan School.

The work is the product of a collaboration on immunometabolism between the biopharmaceutical company UCB and a team of researchers led by Hotamisligil and lead author M. Furkan Burak, a former Hotamisligil lab member and currently a resident in internal medicine at Mount Auburn Hospital, Cambridge, MA. This partnership successfully twins UCB's world-class expertise in monoclonal antibody discovery with Hotamisligil's insight and experience in aP2 biology.

The increase in adipose tissue characteristic of obesity has long been linked to increased risk for such as type 2 diabetes and cardiovascular disease. Recently, it has become clear that the tissue itself plays an active role in metabolic disease, in part by releasing hormones which act in distant sites such as the liver, muscle, and brain that affect systemic metabolism. Work from the Hotamisligil lab previously identified the protein aP2 as a critical hormone mediating communication between adipose tissue and liver. Since aP2 levels are significantly increased in humans with obesity, diabetes, and atherosclerosis, and mutations that reduce aP2 result in significantly reduced risk of diabetes, dyslipidemia, and heart disease, strategies to modify aP2 function carry promise as new lines of therapeutic entities against these common and debilitating chronic diseases.

In the new study, Burak and colleagues describe the development and evaluation of novel monoclonal antibodies targeting aP2. The team found that one of these antibodies effectively improved in two independent models of obesity. Additionally, beneficial reductions in liver fat were observed.

These monoclonal antibodies have the potential to be transformative first-in-class therapeutics to fight obesity-related metabolic and immunometabolic disease, say the authors. This work is still at the preclinical stage and will require extensive evaluation for safety and effectiveness before being considered for use in humans.

Explore further: Discovery of new hormone opens doors to new type 2 diabetes treatments

More information: "Development of a therapeutic monoclonal antibody that targets secreted fatty acid binding protein aP2 to treat type 2 diabetes," M. Furkan Burak, Karen E. Inouye, Ariel White, Alexandra Lee, Gurol Tuncman, Ediz S. Calay, Motohiro Sekiya, Amir Tirosh, Kosei Eguchi, Gabriel Birrane, Daniel Lightwood, Louise Howells, Geofrey Odede, Hanna Hailu, Shauna West, Rachel Garlish, Helen Neale, Carl Doyle, Adrian Moore, Gökhan S. Hotamisligil, Science Translational Medicine, online December 23, 2015. stm.sciencemag.org/lookup/doi/ … scitranslmed.aac6336

Related Stories

Discovery of new hormone opens doors to new type 2 diabetes treatments

May 7, 2013
Harvard School of Public Health (HSPH) researchers have discovered that a particular type of protein (hormone) found in fat cells helps regulate how glucose (blood sugar) is controlled and metabolized (used for energy) in ...

Newly identified molecular mechanism plays role in type 2 diabetes development

July 30, 2015
New research from Harvard T.H. Chan School of Public Health describes a molecular mechanism that helps explain how obesity-related inflammation can lead to type 2 diabetes. The findings describe a surprising connection between ...

New tool identifies novel compound targeting causes of type 2 diabetes

June 17, 2015
A new drug screening technology developed at the Harvard T.H. Chan School of Public Health has identified a new potential anti-diabetes compound—and a powerful way to quickly test whether other molecules can have a positive ...

Excessive contact between cellular organelles disrupts metabolism in obesity

November 24, 2014
Researchers at Harvard School of Public Health (HSPH) have found a novel mechanism causing type 2 diabetes that could be targeted to prevent or treat the disease. The research highlights a previously unrecognized molecular ...

Sex reassignment surgery may be better for transgender women's health than hormones only

November 19, 2015
Emerging evidence suggests that transgender women have a higher risk of developing cardiovascular disease and type 2 diabetes compared with men and women in the general population. A preliminary study to be presented at Cardiovascular, ...

Lipid enzyme heightens insulin sensitivity, potential therapy to treat Type 2 diabetes

July 16, 2015
Reducing high concentrations of a fatty molecule that is commonly found in people with diabetes and nonalcoholic fatty liver disease rapidly improves insulin sensitivity, UT Southwestern Medical Center diabetes researchers ...

Recommended for you

Team provides insight into glucagon's role in diabetic heart disease

February 21, 2018
A UT Southwestern study reveals the hormone glucagon's importance to the development of insulin resistance and cardiac dysfunction during Type 2 diabetes, presenting opportunities to develop new therapies for diabetic diseases ...

Physical exercise reduces risk of developing diabetes: study

February 20, 2018
Exercising more reduces the risk of diabetes and could see seven million fewer diabetic patients across mainland China, Hong Kong and Taiwan, according to new research.

Some viruses produce insulin-like hormones that can stimulate human cells—and have potential to cause disease

February 19, 2018
Every cell in your body responds to the hormone insulin, and if that process starts to fail, you get diabetes. In an unexpected finding, scientists at Joslin Diabetes Center have identified four viruses that can produce insulin-like ...

Researchers discover link between gut and type 1 diabetes

February 19, 2018
Scientists have found that targeting micro-organisms in the gut, known as microbiota, could have the potential to help prevent type 1 diabetes.

Researchers find existing drug effective at preventing onset of type 1 diabetes

February 15, 2018
A drug commonly used to control high blood pressure may also help prevent the onset of type 1 diabetes in up to 60 percent of those at risk for the disease, according to researchers at the University of Colorado Anschutz ...

Chemist designs diabetic treatment minus harmful side effects

February 9, 2018
A chemist in the College of Arts and Sciences (A&S) has figured out how to control glucose levels in the bloodstream without the usual side effects of nausea, vomiting or malaise.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.