Mind-controlled prosthetic arm moves individual 'fingers'

February 16, 2016, Johns Hopkins University School of Medicine
An illustration showing the electrode array on the subject's brain, including a representation of what part of the brain controls each finger. Credit: Guy Hotson

Physicians and biomedical engineers from Johns Hopkins report what they believe is the first successful effort to wiggle fingers individually and independently of each other using a mind-controlled artificial "arm" to control the movement.

The proof-of-concept feat, described online this week in the Journal of Neural Engineering, represents a potential advance in technologies to restore refined hand function to those who have lost arms to injury or disease, the researchers say. The young man on whom the experiment was performed was not missing an arm or hand, but he was outfitted with a device that essentially took advantage of a -mapping procedure to bypass control of his own arm and hand.

"We believe this is the first time a person using a mind-controlled prosthesis has immediately performed individual digit movements without extensive training," says senior author Nathan Crone, M.D., professor of neurology at the Johns Hopkins University School of Medicine. "This technology goes beyond available prostheses, in which the artificial digits, or , moved as a single unit to make a grabbing motion, like one used to grip a tennis ball."

For the experiment, the research team recruited a young man with epilepsy already scheduled to undergo brain mapping at The Johns Hopkins Hospital's Epilepsy Monitoring Unit to pinpoint the origin of his seizures.

The subject uses his mind to move individual fingers on a prosthetic arm. Credit: Journal of Neural Engineering

While brain recordings were made using electrodes surgically implanted for clinical reasons, the signals also control a modular prosthetic limb developed by the Johns Hopkins University Applied Physics Laboratory.

Prior to connecting the prosthesis, the researchers mapped and tracked the specific parts of the subject's brain responsible for moving each finger, then programmed the prosthesis to move the corresponding finger.

First, the patient's neurosurgeon placed an array of 128 electrode sensors—all on a single rectangular sheet of film the size of a credit card—on the part of the man's brain that normally controls hand and arm movements. Each sensor measured a circle of brain tissue 1 millimeter in diameter.

The computer program the Johns Hopkins team developed had the man move individual fingers on command and recorded which parts of the brain the "lit up" when each sensor detected an electric signal.

In addition to collecting data on the parts of brain involved in motor movement, the researchers measured involved in tactile sensation. To do this, the subject was outfitted with a glove with small, vibrating buzzers in the fingertips, which went off individually in each finger. The researchers measured the resulting electrical activity in the brain for each finger connection.

After the motor and sensory data were collected, the researchers programmed the prosthetic arm to move corresponding fingers based on which part of the brain was active. The researchers turned on the prosthetic arm, which was wired to the patient through the brain electrodes, and asked the subject to "think" about individually moving thumb, index, middle, ring and pinkie fingers. The electrical activity generated in the brain moved the fingers.

"The electrodes used to measure brain activity in this study gave us better resolution of a large region of cortex than anything we've used before and allowed for more precise spatial mapping in the brain," says Guy Hotson, graduate student and lead author of the study. "This precision is what allowed us to separate the control of individual fingers."

Initially, the mind-controlled limb had an accuracy of 76 percent. Once the researchers coupled the ring and pinkie fingers together, the accuracy increased to 88 percent.

"The part of the brain that controls the pinkie and ring fingers overlaps, and most people move the two fingers together," says Crone. "It makes sense that coupling these two fingers improved the accuracy."

The researchers note there was no pre-training required for the subject to gain this level of control, and the entire experiment took less than two hours.

Crone cautions that application of this technology to those actually missing limbs is still some years off and will be costly, requiring extensive mapping and computer programming. According to the Amputee Coalition, over 100,000 people living in the U.S. have amputated hands or arms, and most could potentially benefit from such technology.

Explore further: Study sheds light on how neurons control muscle movement

Related Stories

Study sheds light on how neurons control muscle movement

June 23, 2015
Stanford University researchers studying how the brain controls movement in people with paralysis, related to their diagnosis of Lou Gehrig's disease, have found that groups of neurons work together, firing in complex rhythms ...

US military develops prosthetic hand that can 'feel'

September 14, 2015
Researchers fitted a man who has been paralyzed for more than a decade with an experimental prosthetic hand that lets him "feel" sensations, the US military's futuristic development department said.

Brain-controlled prosthesis nearly as good as one-finger typing

July 31, 2015
When we type or perform other precise tasks, our brains and muscles usually work together effortlessly.

A blueprint for restoring touch with a prosthetic hand

October 14, 2013
New research at the University of Chicago is laying the groundwork for touch-sensitive prosthetic limbs that one day could convey real-time sensory information to amputees via a direct interface with the brain.

New prosthetic arm controlled by neural messages

August 6, 2014
Controlling a prosthetic arm by just imagining a motion may be possible through the work of Mexican scientists at the Centre for Research and Advanced Studies (CINVESTAV), who work in the development of an arm replacement ...

Crossing fingers can reduce feelings of pain

March 26, 2015
How you feel pain is affected by where sources of pain are in relation to each other, and so crossing your fingers can change what you feel on a single finger, finds new UCL research.

Recommended for you

Typically human: Babies recognize nested structures similar to our grammar

November 21, 2018
At a mere five months of age, babies seemingly have the ability to recognize very complex grammatical structures. That is what a research team headed by Professor Angela Friederici from the Max Planck Institute for Human ...

Neurons process information differently depending on their location

November 21, 2018
Researchers at the University of Queensland have discovered that the thickness of the brain's outer layer influences how individual neurons process information.

Imagining sounds is just as good as hearing them for removing negative associations

November 21, 2018
Researchers at the Icahn School of Medicine at Mount Sinai and the University of Colorado, Boulder, have found that imagining a sound can be just as effective in breaking an association between that sound and a negative experience ...

New way to ID cognitively aware yet unresponsive people with severe brain injury

November 21, 2018
Some brain-injured people left with disorders of consciousness—unable to communicate or respond, such as people in a coma—nevertheless show normal brain responses to spoken language as measured through the scalp by electroencephalography ...

Making decisions over prolonged periods doesn't diminish accuracy, new study finds

November 21, 2018
Making good decisions typically involves gathering information over at least several seconds, much longer than the time that individual brain cells take to process their inputs. However, this disparity does not reduce our ...

Study bridges a divide in cell aging in neurodegenerative diseases

November 21, 2018
Research from the University of Toronto has shown that in some neurodegenerative diseases, two hallmarks of cell aging – protein aggregation and a type of DNA instability – are linked. They were previously thought to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.