Nutrient deprivation kills kidney cancer cells

February 3, 2016 by Marla Vacek Broadfoot
The majority of kidney cell carcinomas are missing the VHL tumor-suppressor gene. Duke researchers showed that these renal cancer cells remain healthy when all nutrients are present (left panel), but quickly swell up and die of necrosis when deprived of cystine (right panel). Credit: Chien-Kuang Ding, Duke University

All cells need nutrients, but cancer cells are notoriously power hungry. As a result, cancer cells must alter their metabolism to provide the additional fuel needed for them to survive, grow and spread.

For decades, scientists have been trying to exploit this greedy metabolism as a target for new anti-cancer therapies.

Duke University researchers have discovered a promising target for renal cell carcinomas. A study appearing online Feb. 1, 2016 in Cancer Research shows that the majority of these cancers rewire their metabolism in a way that leaves them addicted to an outside nutrient called cystine.

By depriving the cancer cells of the amino acid cystine, the researchers were able to trigger a form of cell death called necrosis in mouse models of the disease.

"We found that the same machinery that makes these tumors so aggressive also makes them vulnerable to nutrient deprivation," said senior study author Jen-Tsan Ashley Chi, Ph.D., associate professor of molecular biology and microbiology at Duke University School of Medicine. "It is like we are beating it at its own game."

Chi said the study points to a promising new approach for the treatment of , a form of kidney cancer that has historically been very difficult to cure. The disease kills more than 100,000 people a year.

About three-fourths of renal cell carcinoma cases are marked by a missing VHL tumor-suppressor gene, which keeps from developing into tumors. Chi and lead study author Xiaohu Tang, a post-doctoral fellow in his lab, decided to investigate how this single genetic change could affect the metabolism and nutrient requirement of cancer cells.

Tang subjected the cancer cells to a nutrient deprivation test, removing each of the 15 amino acids from their growth media, one by one. Most of the time, the cells weathered the change quite well, slowing down their growth but otherwise remaining healthy. But Tang found that when cystine was removed, the cells swelled up and floated to the surface, a sure sign of necrotic death.

The researchers then conducted a number of genetic analyses to piece together the network of genes responsible for this nutrient addiction. Normally, the VHL gene acts to suppress another gene called alpha or TNF-alpha. When VHL is lost, the high levels of TNF-alpha beget a faster-growing, more aggressive form of cancer that sheds loads of dangerous free radicals.

Cystine is responsible for maintaining high levels of antioxidants that disarm free radicals of oxygen; so when the researchers got rid of this nutrient, the cancer cells essentially died by their own hand of free radical damage.

The researchers showed that the approach was successful both in tissue culture cells as well as in mice. Tang and his colleagues in the laboratory of Dr. David Hsu at the Duke Cancer Institute implanted renal cell carcinoma tumors into mice and then treated the animals with sulfasalazine, a drug that blocks cystine uptake. They found that the treatment induced necrosis and significantly delayed tumor growth.

Chi says that better, more potent drugs will be needed to knock out the cancer entirely. But he believes that targeting cancers for destruction by necrosis and not by apoptosis, the other main pathway to cell death, holds great promise therapeutically.

"Most chemotherapies kill cancer cells through apoptosis, and the that escape apoptosis are the root cause of chemotherapy resistance and tumor progression," said Chi. "Cystine starvation treatments could address resistance by killing cells through a different mechanism."

Explore further: Cancer-killing proteins destroy tumor cells in bloodstream

Related Stories

Cancer-killing proteins destroy tumor cells in bloodstream

January 12, 2016
Cornell researchers have discovered potent cancer-killing proteins that can travel by white blood cells to kill tumors in the bloodstream of mice with metastatic prostate cancer. The breakthrough study will be published Feb. ...

Study shows how certain drugs alter metabolism of pancreatic cancer cells

January 21, 2016
UT Southwestern Medical Center researchers have found that cancer drugs known as CDK4/6-inhibitors alter the metabolism of pancreatic cancer cells, revealing a biologic vulnerability that could be exploited for therapeutic ...

Triple-negative breast cancer target for drug development identified

October 3, 2013
Often deadly "triple-negative" breast cancers might be effectively treated in many cases with a drug that targets a previously unknown vulnerability in the tumors, according to a UC San Francisco researcher who described ...

Experimental drugs that change energy supply in cells could slow brain tumor growth

December 14, 2015
Experimental drugs that alter cell metabolism also halted tumor growth and extended survival in mice with cancers linked to changes in the same gene, according to a new study led by researchers at NYU Langone Medical Center, ...

Scientists root out the 'bad seeds' of liver cancer

January 6, 2016
Researchers have found the 'bad seeds' of liver cancer and believe they could one day reprogram them to remain responsive to cancer treatment, a new study has found.

Differences in tumor cell metabolism affect growth, invasion and response

May 19, 2015
Cells within a tumor are not the same; they may have different genetic mutations and different characteristics during growth and throughout treatment. These differences make treating tumors extremely difficult and often lead ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.