Nutrient deprivation kills kidney cancer cells

February 3, 2016 by Marla Vacek Broadfoot, Duke University
The majority of kidney cell carcinomas are missing the VHL tumor-suppressor gene. Duke researchers showed that these renal cancer cells remain healthy when all nutrients are present (left panel), but quickly swell up and die of necrosis when deprived of cystine (right panel). Credit: Chien-Kuang Ding, Duke University

All cells need nutrients, but cancer cells are notoriously power hungry. As a result, cancer cells must alter their metabolism to provide the additional fuel needed for them to survive, grow and spread.

For decades, scientists have been trying to exploit this greedy metabolism as a target for new anti-cancer therapies.

Duke University researchers have discovered a promising target for renal cell carcinomas. A study appearing online Feb. 1, 2016 in Cancer Research shows that the majority of these cancers rewire their metabolism in a way that leaves them addicted to an outside nutrient called cystine.

By depriving the cancer cells of the amino acid cystine, the researchers were able to trigger a form of cell death called necrosis in mouse models of the disease.

"We found that the same machinery that makes these tumors so aggressive also makes them vulnerable to nutrient deprivation," said senior study author Jen-Tsan Ashley Chi, Ph.D., associate professor of molecular biology and microbiology at Duke University School of Medicine. "It is like we are beating it at its own game."

Chi said the study points to a promising new approach for the treatment of , a form of kidney cancer that has historically been very difficult to cure. The disease kills more than 100,000 people a year.

About three-fourths of renal cell carcinoma cases are marked by a missing VHL tumor-suppressor gene, which keeps from developing into tumors. Chi and lead study author Xiaohu Tang, a post-doctoral fellow in his lab, decided to investigate how this single genetic change could affect the metabolism and nutrient requirement of cancer cells.

Tang subjected the cancer cells to a nutrient deprivation test, removing each of the 15 amino acids from their growth media, one by one. Most of the time, the cells weathered the change quite well, slowing down their growth but otherwise remaining healthy. But Tang found that when cystine was removed, the cells swelled up and floated to the surface, a sure sign of necrotic death.

The researchers then conducted a number of genetic analyses to piece together the network of genes responsible for this nutrient addiction. Normally, the VHL gene acts to suppress another gene called alpha or TNF-alpha. When VHL is lost, the high levels of TNF-alpha beget a faster-growing, more aggressive form of cancer that sheds loads of dangerous free radicals.

Cystine is responsible for maintaining high levels of antioxidants that disarm free radicals of oxygen; so when the researchers got rid of this nutrient, the cancer cells essentially died by their own hand of free radical damage.

The researchers showed that the approach was successful both in tissue culture cells as well as in mice. Tang and his colleagues in the laboratory of Dr. David Hsu at the Duke Cancer Institute implanted renal cell carcinoma tumors into mice and then treated the animals with sulfasalazine, a drug that blocks cystine uptake. They found that the treatment induced necrosis and significantly delayed tumor growth.

Chi says that better, more potent drugs will be needed to knock out the cancer entirely. But he believes that targeting cancers for destruction by necrosis and not by apoptosis, the other main pathway to cell death, holds great promise therapeutically.

"Most chemotherapies kill cancer cells through apoptosis, and the that escape apoptosis are the root cause of chemotherapy resistance and tumor progression," said Chi. "Cystine starvation treatments could address resistance by killing cells through a different mechanism."

Explore further: Cancer-killing proteins destroy tumor cells in bloodstream

Related Stories

Cancer-killing proteins destroy tumor cells in bloodstream

January 12, 2016
Cornell researchers have discovered potent cancer-killing proteins that can travel by white blood cells to kill tumors in the bloodstream of mice with metastatic prostate cancer. The breakthrough study will be published Feb. ...

Study shows how certain drugs alter metabolism of pancreatic cancer cells

January 21, 2016
UT Southwestern Medical Center researchers have found that cancer drugs known as CDK4/6-inhibitors alter the metabolism of pancreatic cancer cells, revealing a biologic vulnerability that could be exploited for therapeutic ...

Triple-negative breast cancer target for drug development identified

October 3, 2013
Often deadly "triple-negative" breast cancers might be effectively treated in many cases with a drug that targets a previously unknown vulnerability in the tumors, according to a UC San Francisco researcher who described ...

Experimental drugs that change energy supply in cells could slow brain tumor growth

December 14, 2015
Experimental drugs that alter cell metabolism also halted tumor growth and extended survival in mice with cancers linked to changes in the same gene, according to a new study led by researchers at NYU Langone Medical Center, ...

Scientists root out the 'bad seeds' of liver cancer

January 6, 2016
Researchers have found the 'bad seeds' of liver cancer and believe they could one day reprogram them to remain responsive to cancer treatment, a new study has found.

Differences in tumor cell metabolism affect growth, invasion and response

May 19, 2015
Cells within a tumor are not the same; they may have different genetic mutations and different characteristics during growth and throughout treatment. These differences make treating tumors extremely difficult and often lead ...

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.