Triple-negative breast cancer target for drug development identified

October 3, 2013, University of California, San Francisco

Often deadly "triple-negative" breast cancers might be effectively treated in many cases with a drug that targets a previously unknown vulnerability in the tumors, according to a UC San Francisco researcher who described her discovery in a study published online October 3, 2013 in the journal Cancer Cell.

UCSF researcher Luika Timmerman, PhD, an investigator in the UCSF Helen Diller Family Comprehensive Cancer Center, found that many obtained from triple-negative are especially dependent on cystine, one of the 20 amino acids that are the building blocks of proteins that all cells need. Timmerman used an FDA-approved drug to inhibit activity of a transporter protein that ferries cystine into triple-negative breast cancer cells, and found that it significantly inhibited their growth in culture and when the cancer cells were transplanted into mice.

Roughly one in six women with breast cancer have triple-negative breast cancer, and only about three out of four with this type survive five years or more. These tumors sometimes grow aggressively, advancing from being undetectable to becoming difficult-to-treat between regular screening mammography exams, for instance.

Drugs now are available that effectively target the estrogen and HER2 receptor proteins, which are found in many breast tumors, and these drugs spare most normal cells in the body. However, triple-negative breast cancers are difficult to treat effectively because they do not make either of these receptors. To treat patients with , physicians instead use older chemotherapies that produce side effects in normal tissues, thus limiting the doses that patients can receive.

Timmerman found that she could significantly slow growth of triple-negative tumors using an FDA-approved anti-inflammatory drug called sulfasalazine to block a specific cystine transporter called xCT. While sulfasalazine itself would not be appropriate for treating cancer, Timmerman said, it could serve as a "lead compound" that could be used to develop drugs that specifically target xCT on cells.

"This study of human tumors in mice and of breast cancer cell lines demonstrates the potential of targeting not only this cystine transporter, but also other metabolic abnormalities in cancer," Timmerman said.

Timmerman has spent several years studying the abnormal metabolic behavior of , which can differ substantially from the metabolism of normal . "Different cancers seem to acquire different metabolic abnormalities that might in some cases give them a growth or survival advantage," she said.

"One of the strengths of this study was the large number of different cell lines I was able to test. When I saw similar results in many samples, I felt I was looking at a fundamental metabolic behavior that we could exploit to specifically target triple-negative tumors that overexpress the xCT cystine transporter, a significant group of previously untargettable tumors."

Timmerman initially focused on investigating the metabolism of the amino acid glutamine among different breast cancer-derived cell lines because glutamine metabolism was long known to be perturbed in cancer. She matched genetic "microarray" data that tracks gene activity to functional differences among tumors and tumor cell lines in culture.

But she also measured amino acids and other molecules in cell culture to detect metabolic changes. When she did so, she noticed that cystine and glutamate levels are frequently correlated in triple-negative cancers. A series of experiments led to the discovery that the cystine transporter xCT was abundant and active on many triple-negative tumors and tumor cell lines. Timmerman then tested sulfasalazine on tumors grown in mice and in tumor cell lines and found that blocking xCT activity strongly retarded the growth of triple-negative tumors.

"We have identified a compelling therapeutic target commonly expressed by breast tumors of poorest prognosis, and a lead compound for rapid, effective drug development," Timmerman said.

Explore further: Aggressive breast cancers may be sensitive to drugs clogging their waste disposal

Related Stories

Aggressive breast cancers may be sensitive to drugs clogging their waste disposal

August 12, 2013
In a new paper in Cancer Cell, a team led by Judy Lieberman, PhD, of Boston Children's Hospital's Program in Cellular and Molecular Medicine reports "triple-negative" breast cancers may be vulnerable to drugs that attack ...

Breaking the backbone of triple-negative breast cancers

March 19, 2012
Putting the brakes on an abundant growth-promoting protein causes breast tumors to regress, according to a study published on March 19th in the Journal of Experimental Medicine.

Paragazole excels in preclinical models of triple-negative breast cancer

April 8, 2013
Breast cancers that lack estrogen receptors are more difficult to treat than ER+ cancers. Research presented at the AACR Annual Meeting 2013 demonstrates an investigational drug, Paragazole, that makes triple-negative breast ...

Drug shows promise for triple-negative breast cancer

July 3, 2012
(Medical Xpress) -- A promising new therapy for hard-to-treat triple-negative breast cancer has been reported in the journal Breast Cancer Research by a team at the Tulane University School of Medicine, led by Dr. Bridgette ...

Successful treatment of triple negative breast cancer by modulation of the OGF-OGFr axis

August 9, 2013
Researchers at The Pennsylvania State University College of Medicine, led by Dr. Ian S. Zagon, have discovered that a novel biological pathway, the OGF-OGFr axis, can be modulated in human triple-negative breast cancer cells ...

Enhanced luminal breast tumor response to antiestrogen therapy

September 3, 2013
Breast cancer can be divided into 4 major subtypes using molecular and genetic information from the tumors. Each subtype is associated with different prognosis and should be taken into consideration when making treatment ...

Recommended for you

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018
The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of ...

FDA approves first drug for tumors tied to breast cancer genes

January 12, 2018
(HealthDay)—The U.S. Food and Drug Administration on Friday approved the first drug aimed at treating metastatic breast cancers linked to the BRCA gene mutation.

Breast cancer gene does not boost risk of death: study

January 12, 2018
Young women with the BRCA gene mutation that prompted actress Angelina Jolie's pre-emptive and much-publicised double mastectomy are not more likely to die after a breast cancer diagnosis, scientists said Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.