Calcium waves in the brain alleviate depressive behavior in mice

March 22, 2016, RIKEN
tDCS induces an enhancement of visual flash response in activation area and amplitude (single example). Left- and right-eye flash responses are plotted in upper and lower rows, respectively (ipsilateral responses are masked out). The color range is between mean + 1SD and the peak value of the baseline visual evoked response. Areas exceeding 90% of the baseline visual evoked response (active areas) are demarcated by solid black borders. Credit: RIKEN

Researchers at the RIKEN Brain Science Institute in Japan have discovered that the benefits of stimulating the brain with direct current come from its effects on astrocytes—not neurons—in the mouse brain. Published in Nature Communications, the work shows that applying direct current to the head releases synchronized waves of calcium from astrocytes that can reduce depressive symptoms and lead to a general increase in neural plasticity—the ability of neuronal connections to change when we try to learn or form memories.

Transcranial stimulation (tDCS) is a well-known and effective procedure that has been used for decades to clinically treat major depression. The procedure is non-invasive, lasts about 30 minutes, and involves targeting specific brain areas by applying weak electric current through the head. In addition to reducing symptoms of depression, it has even been shown to enhance learning and synaptic plasticity in both humans and animals.

"While we have known the clinical benefits of this kind of stimulation for quite some time," notes team leader Hajime Hirase, "our research is aimed at understanding the cellular mechanisms through which its effects are made possible."

Because in astrocytes—a type of non-neural glial cell in the brain—have recently been shown to be important for transmitting signals that help neurons form connections with each other, Hirase and his team decided to examine brain activity during transcranial direct current stimulation using calcium imaging.

To accomplish this, they first made a transgenic mouse that expresses a fluorescent calcium-indicator protein in astrocytes and a subset of neurons in the brain. With this setup, they were able to image brain-wide calcium activity with a standard fluorescence microscope.

(top) Ca2+ surges induced by tDCS in normal mice. (bottom). Surges are absent in mice with the IP3 receptor 2 knockout mice. Credit: RIKEN

When they monitored calcium levels, they found that transcranial stimulation caused large amplitude surges of calcium. "Surprisingly, the calcium surges occurred very quickly after stimulation onset," explains lead author Hiromu Monai, "and appeared synchronized all over the cortex not only near the stimulated location."

The calcium surges were absent when the same experiment was performed on mice in which rising calcium levels in astrocytes were prevented, either through knocking out a key receptor or by pharmacologically blocking another one. This allowed the researchers to know that astrocytes, not neurons, were the source of the waves. This was confirmed when they expressed the fluorescent marker using two different recombinant adeno-associated viruses, allowing them to distinguish calcium in neurons from calcium in astrocytes.

Next, they examined the importance of the calcium surges using a mouse model for stress-induced depression. While transcranial stimulation can normally reduce depression-like behavior in these mice, it failed when they blocked the astrocytic calcium surges. "This suggests that the positive effects of transcranial direct current stimulation on depression lie in these wide-spread calcium surges," says Monai. "But, we also wanted to investigate their effects on neural plasticity in general."

To examine this role of astrocytic calcium surges, the team looked at changes in sensory responses after transcranial stimulation. They measured the responses to flashes of light and whisker perturbation, and found that they were more than 50% greater after stimulation—an effect that lasted for 2 hours after stimulation was over. These plastic changes in neuronal responses disappeared when surges in astrocytes were prevented, indicating their importance in helping to change the connectivity between neurons.

"That this mechanism is mediated by astrocytic activity is exciting and hints that astrocytes could be a major therapeutic target for neuropsychiatric diseases," notes Hirase. "Additionally, glial activation by transcranial direct current stimulation should be carefully examined in primates (including humans), and perhaps safety standards should to be re-evaluated from the standpoint of glia."

Explore further: Astrocytes found to bridge gap between global brain activity and localized circuits

More information: Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai U, Hirase H. (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Communications DOI: 10.1038/ncomms11100

Related Stories

Astrocytes found to bridge gap between global brain activity and localized circuits

May 11, 2012
Global network activity in the brain modulates local neural circuitry via calcium signaling in non-neuronal cells called astrocytes (Fig. 1), according to research led by Hajime Hirase of the RIKEN Brain Science Institute. ...

New methods to explore astrocyte effects on brain function

April 29, 2013
A study in The Journal of General Physiology presents new methods to evaluate how astrocytes contribute to brain function, paving the way for future exploration of these important brain cells at unprecedented levels of detail.

Every bite you take, every move you make, astrocytes will be watching you

May 14, 2015
Chewing, breathing, and other regular bodily functions that we undertake "without thinking" actually do require the involvement of our brain, but the question of how the brain programs such regular functions intrigues scientists.

Electrical therapy offers promise for stroke patients

March 1, 2016
Patients experiencing communication problems after having a stroke could see long-term benefits from low-current electrical stimulation therapy, according to an international study led by The University of Queensland.

Learn how to fly a plane from expert-pilot brainwave patterns

February 26, 2016
Dr. Matthew Phillips and his team of investigators from HRL's Information & System Sciences Laboratory used transcranial direct current stimulation (tDCS) in order to improve learning and skill retention. "We measured the ...

Eavesdropping on brain cell chatter: Novel tools learn how astrocytes listen in on neurons

April 16, 2014
Everything we do—all of our movements, thoughts and feelings – are the result of neurons talking with one another, and recent studies have suggested that some of the conversations might not be all that private. Brain ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.