Stem cells regenerate human lens after cataract surgery, restoring vision

March 9, 2016, University of California - San Diego
Cataract in human eye. Credit: Wikipedia.

Researchers at University of California, San Diego School of Medicine and Shiley Eye Institute, with colleagues in China, have developed a new, regenerative medicine approach to remove congenital cataracts in infants, permitting remaining stem cells to regrow functional lenses.

The treatment, which has been tested in animals and in a small, human clinical trial, produced much fewer surgical complications than the current standard-of-care and resulted in regenerated lenses with superior visual function in all 12 of the pediatric cataract patients who received the new surgery.

The findings are published in the March 9 online issue of Nature.

Congenital cataracts - lens clouding that occurs at birth or shortly thereafter - is a significant cause of blindness in children. The clouded lens obstructs the passage of light to the retina and visual information to the brain, resulting in significant visual impairment. Current treatment is limited by the age of the patient and related complications. Most pediatric patients require corrective eyewear after cataract surgery.

"An ultimate goal of stem cell research is to turn on the regenerative potential of one's own for tissue and organ repair and disease therapy," said Kang Zhang, MD, PhD, chief of Ophthalmic Genetics, founding director of the Institute for Genomic Medicine and co-director of Biomaterials and Tissue Engineering at the Institute of Engineering in Medicine, both at UC San Diego School of Medicine.

In the new research, Zhang and colleagues relied upon the regenerative potential of endogenous stem cells. Unlike other stem cell approaches that involve creating stem cells in the lab and introducing them back into the patient, with potential hurdles like pathogen transmission and immune rejection, endogenous stem cells are stem cells already naturally in place at the site of the injury or problem. In the case of the human eye, lens or LECs generate replacement lens cells throughout a person's life, though production declines with age.

Current cataract surgeries largely remove LECs within the lens; the lingering cells generate disorganized regrowth in infants and no useful vision. After confirming the regenerative potential of LECs in animal models, the researchers developed a novel minimally invasive surgery method that preserves the integrity of the lens capsule - a membrane that helps give the lens its required shape to function - and a way to stimulate LECs to grow and form a new lens with vision.

In subsequent tests in animals with cataracts and in a small human trial, they found the new surgical technique allowed pre-existing LECs to regenerate functional lenses. In particular, the human trial involved 12 infants under the age of 2 treated with the new method and 25 similar infants receiving current standard surgical care. The latter control group experienced a higher incidence of post-surgery inflammation, early-onset ocular hypertension and increased lens clouding.

The scientists reported fewer complications and faster healing among the 12 infants who underwent the new procedure and, after three months, a clear, regenerated biconvex lens in all of the patients' eyes.

"The success of this work represents a new approach in how new human tissue or organ can be regenerated and human disease can be treated, and may have a broad impact on regenerative therapies by harnessing the regenerative power of our own body," said Zhang, who also has an appointment at Veterans Affairs San Diego Healthcare System.

Zhang said he and colleagues are now looking to expand their work to treating age-related cataracts. Age-related cataracts is the leading cause of blindness in the world. More than 20 million Americans suffer from cataracts, and more than 4 million surgeries are performed annually to replace the clouded lens with an artificial plastic version, called an intraocular .

Despite technical advances, a large portion of patients undergoing surgery are left with suboptimal vision post-surgery and are dependent upon corrective eyewear for driving a car and/or reading a book. "We believe that our new approach will result in a paradigm shift in cataract surgery and may offer patients a safer and better treatment option in the future."

Explore further: Curing cataracts without surgery?

More information: Haotian Lin et al. Lens regeneration using endogenous stem cells with gain of visual function, Nature (2016). DOI: 10.1038/nature17181

Related Stories

Curing cataracts without surgery?

November 16, 2015
Cataracts are very common. The Centers for Disease Control and Prevention estimates that 20.5 million Americans age 40 and over have them. Cataracts slowly cloud your vision, and people struggling with them say it's like ...

Ophthalmologist claims Ocumetics Bionic Lens to revolutionize vision correction

May 25, 2015
(Medical Xpress)—British Columbia optometrist, inventor and CEO of Ocumetics Technology Corp, Dr Garth Webb is claiming in meetings with the press that his new Ocumetics Bionic Lens is set to revolutionize vision correction. ...

'Petri dish lens' gives hope for new eye treatments

January 31, 2013
(Medical Xpress)—A cure for congenital sight impairment caused by lens damage is closer following research by scientists at Monash University.

Mile High Opthalmics, University of Colorado launch device to ease cataract surgery

January 26, 2015
A new device designed to perform safer, more effective cataract surgery is going on the market following a licensing agreement between the University of Colorado and Mile High Ophthalmics LLC.

Contacts better than permanent lenses for babies after cataract surgery

March 6, 2014
For adults and children who undergo cataract surgery, implantation of an artificial lens is the standard of care. But a clinical trial suggests that for most infants, surgery followed by the use of contact lenses for several ...

Eye drop gives hope for knifeless cataract cure

July 22, 2015
An eye drop tested on dogs suggests that cataracts, the most common cause of blindness in humans, could one day be cured without surgery, a study said Wednesday.

Recommended for you

In effort to treat rare blinding disease, researchers turn stem cells into blood vessels

February 13, 2018
People who inherit a mutated version of the ATF6 gene are born with a malformed or missing fovea, the eye region responsible for sharp, detailed vision. From birth, their vision is severely limited, and there is no cure. ...

Antioxidant therapy prevents devastating vision loss when added to standard-of-care on rare birth defect

February 5, 2018
A new study led by vision researchers at the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo and VA Western New York Healthcare System has demonstrated that the addition of widely available ...

Genetic basis for glaucoma uncovered

January 30, 2018
In two recent publications, Northwestern Medicine scientists and international collaborators discovered mutations that cause improper drainage and a buildup of ocular pressure leading to one form of congenital glaucoma, and ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

New study offers added hope for patients awaiting corneal transplants

January 9, 2018
New national research led by Jonathan Lass of Case Western Reserve University School of Medicine has found that corneal donor tissue can be safely stored for 11 days before transplantation surgery to correct eye problems ...

Diabetic blindness caused and reversed "trapped" immune cells in rodent retinas

January 3, 2018
Johns Hopkins researchers have discovered a cell signaling pathway in mice that triggers vision loss in patients with diabetic retinopathy and retinal vein occlusion – diseases characterized by the closure of blood vessels ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.