Enzyme in myelination process could lead to better understanding of neurological disorders

April 14, 2016

The removal of the enzyme Dnmt1 during oligodendrocyte progenitor cell (OPC) differentiation in the central nervous system resulted in inefficient myelin formation and neurological deterioration, including loss of control of bodily movements, in mice, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published today in the medical journal Cell Reports. The results could lead to a new understanding of multiple sclerosis and other myelin disorders in humans.

Oligodendrocytes (OLs) are cells with the ability to form a specialized membrane that is called "myelin." Myelin is the insulating sheathing around the axons of nerve cells, which provides energetic support and allows for faster electrical impulse conduction. OLs are derived from progenitors called OPCs, which are stem-like cells with the ability to divide and generate OLs through a complex process of gene regulation.

This study shows that the development of OPCs into myelin-forming cells requires DNA methylation, which is a process consisting of the addition of chemical groups to the DNA carried out by enzymes called methyl transferases (DNMTs). When these groups are added, genes cannot be expressed and therefore are "silenced." The authors identify the many genes needed to be "silenced" in OPCs in order to allow for proper formation of myelin during development.

Researchers showed that the removal of Dnmt1 in oligodendrocyte lineage not only limited cell growth, but also led to cellular stress as well as severe and clinically symptomatic hypomelination - a reduced amount of myelin in nervous tissue. The mice experienced significant neurological symptoms, such as tremors and a loss of control of body movement, and eventually death.

"Our group has previously observed altered DNA methylation in the brain of patients with , the most devastating adult demyelinating disorder, but its role in myelin formation and the identity of the genes silenced by DNMT's in OPCs were not known," says lead investigator Patrizia Casaccia, MD, PhD, Professor of Neuroscience, Genetics and Genomics, and Neurology, and Chief of the Center of Excellence for Myelin Repair at the Friedman Brain Institute at the Icahn School of Medicine. "A better understanding of why DNA methylation is important for myelin formation and what genes need to be shut off during the formation of OLs from OPCs has important implications not only for development, but also for myelin repair."

The research could lead to the development of treatment for disorders where the is damaged and could also help in understanding how OPCs transform into brain cancer cells.

Further study is needed to understand the causes underlying aberrant DNA methylation in the brains of multiple sclerosis patients and in preclinical models. Translational applications will include the identification of factors that could bypass impaired DNA methylation.

Explore further: A supplement for myelin regeneration

Related Stories

A supplement for myelin regeneration

December 7, 2015
Multiple sclerosis patients continually lose the insulating myelin sheath that wraps around neurons and increases the speed of impulses in the central nervous system. Whenever neurons are demyelinated, OPCs migrate toward ...

Elucidation of the molecular mechanisms involved in remyelination

September 3, 2015
Researchers in Japan have revealed the molecular mechanism involved in the process of repair to damage of the myelin sheath.

Changes in nerve cells may contribute to the development of mental illness

November 28, 2012
Reduced production of myelin, a type of protective nerve fiber that is lost in diseases like multiple sclerosis, may also play a role in the development of mental illness, according to researchers at the Graduate School of ...

Myelin cells swing along blood vessels to traverse the brain

January 22, 2016
The cells that create myelin, a fatty material that insulates nerve fibers in the brain's white matter, migrate into the developing brain by climbing and swinging on blood vessels, according to new research led by UC San ...

Researchers discover dynamic behavior of progenitor cells in brain

May 9, 2013
By monitoring the behavior of a class of cells in the brains of living mice, neuroscientists at Johns Hopkins discovered that these cells remain highly dynamic in the adult brain, where they transform into cells that insulate ...

Recommended for you

Our memory shifts into high gear when we think about raising our children, new study shows

December 15, 2017
Human memory has evolved so people better recall events encountered while they are thinking about raising their offspring, according to a new study conducted by researchers at Binghamton University, State University of New ...

Offbeat brain rhythms during sleep make older adults forget

December 15, 2017
Like swinging a tennis racket during a ball toss to serve an ace, slow and speedy brainwaves during deep sleep must sync up at exactly the right moment to hit the save button on new memories, according to new UC Berkeley ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.