Researcher synthesizes hybrid molecule that delivers a blow to malignant cells

April 1, 2016, NYU Tandon School of Engineering
Gold nano particle molecule delivers curcumin to cancer cells. Credit: NYU Tandon School of Engineering

A new hybrid molecule developed in the lab at the NYU Tandon School of Engineering shows promise for treating breast cancer by serving as a "shipping container" for cytotoxic—or cell-destroying—chemotherapeutic agents. The protein/polymer-gold nanoparticle (P-GNP) composite can load up with these drugs, carry them to malignant cells, and unload them where they can do the most damage with the least amount of harm to the patient.

The hybrid molecule enhances small-molecule loading, sustained release, and increased uptake in . It is also relatively easy to synthesize. It was developed by Jin Kim Montclare—an associate professor in the Department of Chemical and Biomolecular Engineering at NYU Tandon and an affiliate professor of Chemistry at NYU and Biochemistry at SUNY Downstate—along with collaborators at the Department of Biology at Brooklyn College and Graduate Center of the City University of New York.

Montclare explained that these abilities make the P-GNP vehicle unique among hybrids. "The has been exclusively developed in our lab; no one else has made such constructs," she said. These polymers possess the unique ability to self-assemble in a temperature-sensitive manner while also exhibiting the ability to encapsulate small molecules.

As published in the Journal of Nanomedicine & Nanotechnology, the team performed tests with in vitro samples of the MCF-7 cell line, using the anti-inflammatory compound curcumin, shown experimentally to inhibit cancer cell growth when applied directly to a tumor, as the chemotherapy agent. When compared to the protein polymers alone, the P-GNP hybrid demonstrated a greater than seven-fold increase in curcumin binding, a nearly 50 percent slower release profile, and more than two-fold increase in cellular uptake of curcumin.

This is an important achievement, given the difficulty in delivering chemotherapeutic compounds to their targets because such agents tend to be hydrophobic, meaning they don't dissolve easily in water. And the more potent they are, the more hydrophobic they tend to be, said Montclare, who recently received the "Rising Star Award" from the American Chemical Society's Women Chemist Committee.

"The P-GNPs are able to solubilize the hydrophobic small molecule through both the protein domain itself, and the gold nanoparticles. Thus, P-GNP can carry higher payloads, enabling it to deliver more drug," she said.

She also found an easier way to build these hybrid molecules. Most literature describes a process involving high temperatures and pressures, and harsh chemistry. But Montclare is able to synthesize P-GNP in one operation thanks to histidine tags, which, she said, are "responsible for 'templating' the GNPs, making the synthesis a possibility under ambient temperature and pressure. So we do it all at once because the protein itself crystallizes the gold right from a solution of gold salts to generate GNP right on the end of the protein polymer."

The next step is to observe efficacy by injecting P-GNP complexes directly into a variety of mouse cancer models. Montclare said human testing of P-GNP is still years away.

Explore further: Nanofiber breakthrough holds promise for medicine and microprocessors

More information: Min Dai et al. Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery, Journal of Nanomedicine & Nanotechnology (2016). DOI: 10.4172/2157-7439.1000356

Related Stories

Nanofiber breakthrough holds promise for medicine and microprocessors

February 29, 2012
(PhysOrg.com) -- A new method for creating nanofibers made of proteins, developed by researchers at Polytechnic Institute of New York University (NYU-Poly), promises to greatly improve drug delivery methods for the treatment ...

Engineering a protein to prevent brain damage from toxic agents

July 31, 2014
Research at New York University is paving the way for a breakthrough that may prevent brain damage in civilians and military troops exposed to poisonous chemicals—particularly those in pesticides and chemical weapons.

Recommended for you

Immunotherapy combo not approved for advanced kidney cancer patients on the NHS

December 14, 2018
People with a certain type of advanced kidney cancer will not be able to have a combination of two immunotherapy drugs on the NHS in England.

New drug seeks receptors in sarcoma cells, attacks tumors in animal trials

December 13, 2018
A new compound that targets a receptor within sarcoma cancer cells shrank tumors and hampered their ability to spread in mice and pigs, a study from researchers at the University of Illinois reports.

Surgery unnecessary for many prostate cancer patients

December 13, 2018
Otherwise healthy men with advanced prostate cancer may benefit greatly from surgery, but many with this diagnosis have no need for it. These conclusions were reached by researchers after following a large group of Scandinavian ...

Combining three treatment strategies may significantly improve melanoma treatment

December 12, 2018
A study by a team led by a Massachusetts General Hospital (MGH) investigator finds evidence that combining three advanced treatment strategies for malignant melanoma—molecular targeted therapy, immune checkpoint blockade ...

Researchers use computer model to predict prostate cancer progression

December 12, 2018
An international team of cancer researchers from Denmark and Germany have used cancer patient data to develop a computer model that can predict the progression of prostate cancer. The model is currently being implemented ...

New insight into stem cell behaviour highlights therapeutic target for cancer treatment

December 12, 2018
Research led by the University of Plymouth and Technische Universität Dresden has identified a new therapeutic target for cancer treatment and tissue regeneration – a protein called Prominin-1.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.