MRI technique induces strong, enduring visual association

June 30, 2016
Participants in a set of experiments were unknowingly trained to associate red with vertical stripes, even when the background was gray or green. Credit: Watanabe et. al.

Researchers have made two new scientific points with a set of experiments in which they induced people to perceive colors that weren't really there—one concerning how the brain works and the other concerning how to work the brain.

Working with colleagues in Japan, the scientists at Brown University used a novel technique to surreptitiously train a small group of volunteers to associate vertical stripes with the color red and—to a lesser extent as a consequence—horizontal stripes with the color green.

The first point made by the researchers was that the association was induced by specifically targeting the early visual areas of the brain. Those "V1" and "V2" areas are the first parts of the cortex to process basic visual information coming from the eyes, but scientists had not previously seen associative learning occurring there.

"This is the first clear study that shows that V1 and V2 are capable of creating associative learning," said Takeo Watanabe, the Fred M. Seed Professor of Cognitive and Linguistic Sciences at Brown and co-corresponding author of the paper in the journal Current Biology.

The second point is that the association was learned strongly enough that subjects came to perceive the background colors paired with vertical bars as red even when the background was gray or sometimes a bit greenish. That learned misperception was evident in tests as much as five months later.

The demonstration raises the possibility that the training method could be used to induce other enduring associations in the brain, Watanabe said.

To assign association

Here is how Watanabe's team induced the association:

With volunteers in the magnetic resonance imaging scanner, the first step was to measure patterns of activity in V1 and V2 when they saw different combinations of colored backgrounds (red, green and gray) behind two different stripe orientations (vertical and horizontal). The researchers used that data to encode a "classifier" that could distinguish between red and green to recognize the brain activity the volunteers induced in those areas in future experiments.

Then the experimenters engaged in a subterfuge even greater than a little mind reading. With the intent of training 12 of their 18 volunteers to associate red with vertical stripes, they showed them gray backgrounded vertical stripes embedded within a circle and then a small plain white disk. They asked the volunteers to imagine ways of making the disk larger. The volunteers were offered a reward based on the size of the disk they could produce.

Over three days of such training, volunteers thought of a variety of ways they might use their brains to enlarge the disk, but really the disk only got larger when the classifier saw signs they were thinking of red (for whatever coincidental reason). In other words, the 12 volunteers were really being trained such that after seeing vertical stripes they would induce activity patterns in V1 and V2 similar to the activity that had occurred when they actually saw red.

"Participants were not aware of the purpose of the experiment or what kind of activation they learned to induce," Watanabe said.

After the 12 volunteers had been trained and the six others were left untrained, the researchers then measured their visual perceptions. Both groups of were shown circles with central patterns of vertical, horizontal or diagonal stripes. Each of those patterns had backgrounds colored somewhere along a continuum of eight settings ranging from obviously to faintly green to gray to faintly to obviously red.

The key question was whether the trained and untrained subjects would exhibit any differences in the colors they perceived in the backgrounds behind the vertical stripes. Sure enough, trained subjects were significantly more likely than untrained ones to perceive the gray background of vertical stripes—and even the faintly green background—as red. Meanwhile, trained subjects were more likely to associate backgrounds behind horizontal stripes as greener than untrained subjects.

Neither group showed any incorrect color bias in judging the backgrounds behind the diagonal stripes. In testing up to five months later, however, trained subjects still showed significant associations for vertical gratings.

Applications of associations

Associative learning and memory—"this goes with that"—is pervasive in the brain, but it was a novel finding of basic brain science to show that it can occur in early visual areas, Watanabe said.

In a more applied vein, Watanabe said he is eager to find out if scientists can use the study's technique of training subjects with (unwitting) MRI-based feedback to create associations in other parts of the brain for educational or therapeutic reasons.

"Our brain functions are mostly based on associative processing, so association is extremely important," Watanabe said. "Now we know that this technology can be applied to induce associative learning."

Through the technique, which Watanabe calls A-DecNef, perhaps people can learn even when they don't know what they are learning, or that they are learning at all.

Explore further: Many older brains have plasticity, but in a different place

Related Stories

Many older brains have plasticity, but in a different place

November 19, 2014
A widely presumed problem of aging is that the brain becomes less flexible—less plastic—and that learning may therefore become more difficult. A new study led by Brown University researchers contradicts that notion with ...

Study shows training improves recognition of quickly presented objects

July 9, 2012
So far it has seemed an irreparable limitation of human perception that we strain to perceive things in the very rapid succession of, say, less than half a second. Psychologists call this deficit "attentional blink." We'll ...

Human early visual cortex subconsciously resolves invisible conflicts

June 29, 2016
Our visual system is constantly bombarded with complex optical information. The input information is often insufficient or ambiguous, leading to potentially conflicting interpretations about the structure of the physical ...

How sleep aids visual task learning

November 10, 2013
As any indignant teacher would scold, students must be awake to learn. But what science is showing with increasing sophistication is how the brain uses sleep for learning as well. At the annual meeting of the Society for ...

Elderly brains learn, but maybe too much

November 26, 2014
A new study led by Brown University reports that older learners retained the mental flexibility needed to learn a visual perception task but were not as good as younger people at filtering out irrelevant information.

Computer games help explain lizard stripes

June 8, 2016
(Phys.org)—A pair of researchers with the Indian Institute of Science Education and Research Thiruvananthapuram has found that stripes on lizards cause predators to see them as moving slower than they actually are, causing ...

Recommended for you

Our memory shifts into high gear when we think about raising our children, new study shows

December 15, 2017
Human memory has evolved so people better recall events encountered while they are thinking about raising their offspring, according to a new study conducted by researchers at Binghamton University, State University of New ...

Offbeat brain rhythms during sleep make older adults forget

December 15, 2017
Like swinging a tennis racket during a ball toss to serve an ace, slow and speedy brainwaves during deep sleep must sync up at exactly the right moment to hit the save button on new memories, according to new UC Berkeley ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

TheGhostofOtto1923
not rated yet Jun 30, 2016
Huh. I wonder what some philo would say about humans being trained to perceive 'redness'.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.