Study shows auditory cortex of hearing and deaf people are nearly identical

July 17, 2016
brain
Credit: public domain

The neural architecture in the auditory cortex - the part of the brain that processes sound - of profoundly deaf and hearing people is virtually identical, a new study has found.

The study raises a host of new questions about the role of experience in processing sensory information, and could point the way toward potential new avenues for intervention in deafness. The study is described in a June 18 paper published in Scientific Reports.

The paper was authored by Ella Striem-Amit, a post-doctoral researcher in Alfonso Caramazza's Cognitive Neuropsychology Laboratory at Harvard, Mario Belledonne from Harvard, Jorge Almeida from the University of Coimbra, Quanjing Chen, Yuxing Fang, Zaizhu Han and Yanchao Bi from Beijing Normal University.

"One reason this is interesting is because we don't know what causes the brain to organize the way it does," said Striem-Amit, the lead author of the study. "How important is each person's experience for their brain development? In audition, a lot is known about (how it works) in hearing people, and in animals... but we don't know whether the same organization is retained in congenitally deaf people."

Those similarities between deaf and hearing brain architecture, Striem-Amit said, suggest that the organization of the auditory cortex doesn't critically depend on experience, but is likely based on innate factors. So in a person who is born deaf, the brain is still organized in the same manner.

But that's not to suggest experience plays no role in processing .

Evidence from other studies have shown that cochlear implants are far more successful when implanted in toddlers and young children, Striem-Amit said, suggesting that without sensory input during key periods of brain plasticity in early life, the brain may not process information appropriately.

To understand the organization of the auditory cortex, Striem-Amit and her collaborators first obtained what are called "tonotopic" maps showing how the auditory cortex responds to various tones.

To do that, they placed volunteers in an MRI scanner and played different tones- some high frequency, some low frequency - and tracked which regions in the auditory cortex were activated. They also asked groups of hearing and deaf subjects to simply relax in the scanner, and tracked their brain activity over several minutes. This allows mapping which areas are functionally connected - essentially those that show similar, correlated patterns of activation - to each other.

They then used the areas showing frequency preference in the tonotopic maps to study the functional connectivity profiles related to tone preference in the hearing and congenitally deaf groups and found them to be virtually identical.

"There is a balance between change and typical organization in the auditory cortex of the deaf" said the senior researcher, Prof. Yanchao Bi, "but even when the auditory cortex shows plasticity to processing vision, its typical auditory organization can still be found".

The study also raises a host of questions that have yet to be answered.

"We know the architecture is in place - does it serve a function," Striem-Amit said. "We know, for example, that the auditory cortex of the deaf is also active when they view sign language and other visual information. The question is: What do these regions do in the deaf? Are they actually processing something similar to what they process in , only through vision?"

In addition to studies of animals, the researchers' previous studies of people born blind suggest clues to the puzzle.

In the blind, the topographical architecture of the visual cortex (the visual parallel of the tonotopic map, called "retinotopic") is like that in the sighted. Importantly, beyond topographic organization, regions of the visual cortex show specialization in processing certain categories of objects in sighted individuals show the same specialization in the congenitally blind when stimulated through other senses. For example, the blind reading Braille, or letters delivered through sound, process that information in the same area used by sighted subjects in processing visual letters.

"The principle that much of the brain's organization develops largely regardless of experience is established in blindness," Striem-Amit said. "Perhaps the same principle applies also to deafness".

Explore further: Researchers study how cochlear implants affect brain circuits

Related Stories

Researchers study how cochlear implants affect brain circuits

June 30, 2016
Four-year-old William Wootton was born profoundly deaf, but thanks to cochlear implants fitted when he was about 18 months old, the Granite Bay preschooler plays with a keyboard synthesizer and reacts to the sounds of airplanes ...

Deaf brain processes touch differently, study shows

July 10, 2012
People who are born deaf process the sense of touch differently than people who are born with normal hearing, according to research funded by the National Institutes of Health. The finding reveals how the early loss of a ...

Rewired visual input to sound-processing part of the brain leads to compromised hearing

August 22, 2012
Scientists at Georgia State University have found that the ability to hear is lessened when, as a result of injury, a region of the brain responsible for processing sounds receives both visual and auditory inputs.

Study challenges conventional wisdom that sight-based brain sensory network organization is impaired with blindness

April 13, 2015
Is visual input essential to how the topographical map of the visual cortex develops in the human brain?

Brain anatomy differences between deaf, hearing depend on first language learned

April 15, 2014
In the first known study of its kind, researchers have shown that the language we learn as children affects brain structure, as does hearing status. The findings are reported in the Journal of Neuroscience.

Recommended for you

Worms learn to smell danger

October 17, 2017
Worms can learn. And the ways they learn and respond to danger could lead scientists to new treatments for people with neurodegenerative diseases.

Team finds training exercise that boosts brain power

October 17, 2017
One of the two brain-training methods most scientists use in research is significantly better in improving memory and attention, Johns Hopkins University researchers found. It also results in more significant changes in brain ...

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

fMRI scans reveal why pain tolerance goes up during female orgasm and shows brain does not turn off

October 13, 2017
(Medical Xpress)—A team of researchers at Rutgers University has determined why women are able to tolerate more pain during the time leading up to and during orgasm. In their paper published in the Journal of Sexual Medicine, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

thingumbobesquire
not rated yet Jul 17, 2016
The importance of this study lies far beyond the surface issue of hearing. As the comparison for the visual cortex hints there is a unifying principle for the organization of the biological senses. On the level of ontology, the issue is whether the senses are a sort of blank slate or tabula rasa or as Leibniz demonstrated there exists a pre-established harmony at a higher level of organization. In Leibniz' New Essays on Human Understanding, he refutes John Locke's assertions that knowledge is derived from mere sense certainty. The underlying issue is one of the choice of scientific methodology. https://archive.o...32296422

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.