New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria

August 17, 2016, Forsyth Institute

Scanning electron micrograph of S. aureus; false color added. Credit: CDC
Staphylococcus aureus is a common colonizer of the human body. Although, one quarter of the U.S. population live with the bacteria and never get sick, having S. aureus present in the nostrils is a risk for infections that range in severity from mild skin to life- threatening MRSA infections. Research from the Forsyth Institute is providing insight into how harmless Corynebacterium species, bacterial members of the nasal and skin microbiome, help protect humans from disease.

A recent study by senior-author Katherine P. Lemon MD, PhD and first-author Matthew M. Ramsey PhD, along with Dr. Marcelo Freire at the Forsyth Institute, and with Rebecca Gabrilska and Dr. Kendra Rumbaugh from Texas Tech University, shows that when the two bacteria interact, Corynebacterium inhibits the virulence of S. aureus. Further understanding of these interactions is likely to help researchers to develop new treatments for preventing S. aureus infections. In addition, further research on the interactions between benign members of the human microbiome and bacteria, like S. aureus, that exhibit similar dual characteristics of living in harmony with and causing infections of humans, so-called pathobionts, could lead to the development of novel treatments for other diseases.

"Our research helps set the stage for the development of small molecules and, potentially, probiotic therapies for promoting health by actively managing nasal microbiome composition," says Lemon. "This research identifies a role for Corynebacterium species in suppressing S. aureus virulence, and is an exciting early stage in our exploration of the molecular mechanisms that sculpt the composition of the nasal microbiome and influence colonization by pathobionts. We look forward to an increase in research on commensal-pathobiont interactions within the human microbiome and an ever-increasing understanding of the significance of our beneficial bacteria partners."

In recent years, the emergence of an antibiotic resistant form of S. aureus infection (methicillin-resistance S. aureus or MRSA) has been a vexing problem. According to the Centers for Disease Control and Prevention, MRSA caused over 80,000 cases of invasive disease and over 10,000 deaths annually from 2005 through 2011. As more and more species of bacteria become antibiotic resistant, a deeper understanding of the interactions between potentially helpful and harmful bacteria in our microbiomes offers new approaches for treating diseases by harnessing the functions of already-present "beneficial" bacteria. Because pathobiont colonization is a prerequisite for infection and transmission, a possible approach to prevent infections by bacteria such as S. aureus is to limit or decrease their abundance or to shift them towards harmless behavior using either compounds derived from benign/beneficial members of the microbiome or by using these themselves as probiotics.

The full paper, titled "Staphylococcus aureus shifts towards commensalism in response to Corynebacterium species" is available for download from the Frontiers in Microbiology website.

Explore further: Communication between nostril/skin microbiome bacteria can influence pathogen behavior

More information: Staphylococcus aureus shifts towards commensalism in response to Corynebacterium species, DOI: 10.3389/fmicb.2016.01230 , http://journal.frontiersin.org/article/10.3389/fmicb.2016.01230/abstract

Related Stories

Communication between nostril/skin microbiome bacteria can influence pathogen behavior

July 22, 2014
A team of scientists has made an important discovery about the molecular interactions that occur between generally benign species of Propionibacterium bacteria and the pathogenic bacterium Staphylococcus aureus, the cause ...

New model sheds light on secondary bacterial pneumonia

August 9, 2016
August 9, 2016 - For years, researchers have known that the bacteria Staphylococcus aureus (S. aureus) can trigger severe, sometimes deadly secondary bacterial pneumonia, in some people who are subsequently infected with ...

Scientists find a salty way to kill MRSA

August 16, 2016
Scientists have discovered a new way to attack Staphylococcus aureus bacteria. The team, from Imperial College London, have revealed how the bacteria regulates its salt levels.

Decrease in pediatric S. aureus infections due to MRSA

March 3, 2016
(HealthDay)—The proportion of pediatric Staphylococcus aureus infections due to methicillin-resistant S. aureus seems to be decreasing in pediatric populations, according to a study published online March 1 in Pediatrics.

Staphylococcus aureus: Why it just gets up your nose

December 27, 2012
A collaboration between researchers at the School of Biochemistry and Immunology and the Department of Microbiology at Trinity College Dublin has identified a mechanism by which the bacterium Staphylococcus aureus (S. aureus) ...

Recommended for you

Small-scale poultry farming could mean big problem in developing countries

December 16, 2018
Small-scale farming in developing countries provides those in rural communities with income and access to protein, but it may have a large impact on antibiotic resistance, according to a new University of Michigan study.

RNA processing and antiviral immunity

December 14, 2018
The RIG-I like receptors (RLRs) are intracellular enzyme sentries that detect viral infection and initiate a first line of antiviral defense. The cellular molecules that activate RLRs in vivo are not clear.

Faster test for Ebola shows promising results in field trials

December 13, 2018
A team of researchers with members from the U.S., Senegal and Guinea, in cooperation with Becton, Dickinson and Company (BD), has developed a faster test for the Ebola virus than those currently in use. In their paper published ...

Drug targets for Ebola, Dengue, and Zika viruses found in lab study

December 13, 2018
No drugs are currently available to treat Ebola, Dengue, or Zika viruses, which infect millions of people every year and result in severe illness, birth defects, and even death. New research from the Gladstone Institutes ...

Urbanisation and air travel leading to growing risk of pandemic

December 13, 2018
Increased arrivals by air and urbanisation are the two main factors leading to a growing vulnerability to pandemics in our cities, a University of Sydney research team has found.

Researchers discover new interactions between Ebola virus and human proteins

December 13, 2018
Several new connections have been discovered between the proteins of the Ebola virus and human host cells, a finding that provides insight on ways to prevent the deadly Ebola virus from reproducing and could lead to novel ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.