Fungus causing fatal infections in hospitalized patients has unique growth patterns

August 17, 2016, American Society for Microbiology

The multidrug-resistant yeast Candida auris, which has caused fatal infections in some hospitalized patients, has at least two different growth patterns and some of its strains are as capable of causing disease as the most invasive type of yeast called Candida albicans, according to a study published this week in mSphere, an open access journal from the American Society for Microbiology.

First described in 2009 after being isolated from external ear discharge of a patient in Japan, C. auris is resistant to many antifungal drugs used to treat Candida infections. C. auris infections, such as bloodstream infections, wound infections and ear infections, have been reported in South Korea, India, South Africa and Kuwait, according to the Centers for Disease Control and Prevention; the organism also has been identified in Colombia, Venezuela, Pakistan and the United Kingdom. C. auris infections have most commonly been hospital-acquired and occurred several weeks into a patient's hospital stay.

Because C. auris is closely related to several other Candida species and shares some characteristics, tests used to help diagnose infection may confuse it with other species, said lead study author Andrew M. Borman, PhD, principal clinical scientist and deputy director of the Public Health England Mycology Reference Laboratory in Bristol, UK.

"Unlike most other Candida species, this organism has the propensity to persist and spread within the hospital environment, with large numbers of patients becoming colonized," Borman said. "We need to understand why C. auris has only become a worldwide issue over the last few years, why it has 'emerged' so rapidly, and where it is found outside of the human population."

Borman and colleagues compared the pathogenicity, or disease-causing potential, of 12 C. auris samples taken from patients treated at six National Health Service hospitals in England with samples of other disease-causing Candida species. To do so, they injected young wax moth larvae (called Galleria mellonella, an insect model used to study human infection) with the assorted Candida samples to measure progression of disease.

Normally, a yeast copies itself and divides during growth. But the C. auris samples differed in their growth characteristics in the laboratory, with a proportion failing to separate after budding, resulting in the formation of large clumps of cells that could not be physically disrupted. The investigators also found strain-specific differences in the behavior of C. auris, with the clumped strains being less capable of causing disease than the ones that did not clump. The strains that did not clump were as capable of causing disease as another type of Candida called C. albicans, which is currently believed to have the most disease-causing potential in the Candida family.

"Despite receiving considerable attention since its first description, little is known concerning the disease-causing potential of this emerging fungal pathogen," said Elizabeth Johnson, PhD, director of the National Mycology Reference Laboratory. "We were surprised to find two very different growth forms of C. auris depending on the strain. We were also surprised by the virulence of this species because in most other types of Candida, the ability to cause disease relates to the organism's ability to form hyphae (fine, branching tube-like structures). C. auris is not able to form these hyphae in the lab or in the insect model, so we would have predicted reduced ability to cause disease."

Continuing studies will investigate whether the clumping behavior affects the organism's susceptibility to antifungal agents, Johnson said. "The major challenge facing researchers is to fully understand what makes this particular species behave so differently," she said.

Explore further: Novel algorithm predicts drug combinations to treat drug resistant fungal infections

Related Stories

Novel algorithm predicts drug combinations to treat drug resistant fungal infections

July 14, 2016
Scientists have created an algorithm that can identify drug combinations to treat fungal infections that have become resistant to current drug treatments. This new study, published in PLOS Computational Biology, represents ...

Candida-specific helper T cells are preferential and early targets of HIV

June 9, 2016
Candida yeasts normally live on human skin and mucous membranes without causing disease. In individuals with a weakened immune system, however, they are a major cause of opportunistic infections. A study published on June ...

Drug combinations a good approach for infectious fungus, research shows

February 6, 2015
Researchers at the University of Toronto have discovered that Candida albicans—a leading cause of potentially fatal hospital-acquired infections—rarely develops resistance to combination drug therapy and, when it becomes ...

Genetic target could help fight deadly drug-resistant infections

July 18, 2016
Fungal infections pose a major threat to hospital patients and have proven difficult to combat, but scientists have unlocked evidence that could lead to more effective treatment.

The killer fungus that lives in your mouth

August 24, 2015
On hearing the word "fungi" most people will probably think of pizza al funghi or a portobello mushroom burger. Incidentally, roughly half of the people salivating about these dishes will also carry a fungus called Candida ...

Boosting gut bacteria defense system may lead to better treatments for bloodstream infections

June 8, 2015
An upset in the body's natural balance of gut bacteria that may lead to life-threatening bloodstream infections can be reversed by enhancing a specific immune defense response, UT Southwestern Medical Center researchers have ...

Recommended for you

Flu infection study increases understanding of natural immunity

January 23, 2018
People with higher levels of antibodies against the stem portion of the influenza virus hemagglutinin (HA) protein have less viral shedding when they get the flu, but do not have fewer or less severe signs of illness, according ...

New long-acting approach for malaria therapy developed

January 22, 2018
A new study, published in Nature Communications, conducted by the University of Liverpool and the Johns Hopkins University School of Medicine highlights a new 'long acting' medicine for the prevention of malaria.

Virus shown to be likely cause of mystery polio-like illness

January 22, 2018
A major review by UNSW researchers has identified strong evidence that a virus called Enterovirus D68 is the cause of a mystery polio-like illness that has paralysed children in the US, Canada and Europe.

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.