Researchers pinpoint key regulatory role of noncoding genes in prostate cancer development

August 15, 2016
Micrograph showing prostatic acinar adenocarcinoma (the most common form of prostate cancer) Credit: Wikipedia

Prostate cancer researchers studying genetic variations have pinpointed 45 genes associated with disease development and progression.

Principal investigator Hansen He says the findings published online today in Nature Genetics show how these genes - known as "noncoding RNA" - function in activating the disease process. Dr. He, an epigeneticist, is a Scientist at the Princess Margaret Cancer Centre, University Health Network. He is also Assistant Professor in the Department of Medical Biophysics, University of Toronto.

"Our research looked at genetic variations associated with prostate cancer and found that about half of these variations may function through noncoding genes rather than the protein-coding genes. In other words, we have discovered that noncoding RNA has a very important function in driving prostate cancer development and disease progression."

Dr. He says: "In prostate cancer there are more than 100 known risk regions associated with the development and progression of the disease but for most of them we don't know how. In our work, we found that half those risk regions may function through noncoding genes."

Dr. He says that integrating this new knowledge about genetic variations and the function of noncoding RNA moves the science closer to developing a clinical biomarker to advance personalized cancer medicine for patients by being able to predict who will develop prostate cancer and whether or not it will be aggressive.

The video will load shortly

The research team collaborated with the Princess Margaret Genome Centre and delved further into the genetic variations associated with noncoding RNA PCAT1, which is already known to be highly expressed in patients, to zero in on how the noncoding genes function.

"Noncoding RNA has many functions and in this study we found that PCAT1 functions as a kind of glue to attract different protein complexes together and guide them to specific genomic location to activate their target gene expression that starts the disease process.

"We are going to expand this knowledge as we research the other 44 genes associated with genetic variations," says Dr. He.

"Cancer is very smart to take every possible way to survive and use every piece of our genome. If research only focuses on the two percent of the genome that is the protein- coding genes, we will have limited understanding of how the cancer can survive. We cannot achieve personalized cancer medicine without understanding the other 98 percent of our genome."

The other 98 percent - what used to be called 'junk DNA' because it was outside the protein-coding genes with no known function - is now providing a treasure trove to epigeneticists such as Dr. He.

"The major contribution of our work is to the link genetic variations outside of the gene to noncoding genes rather than protein-coding , which have been the traditional research focus."

Explore further: 'Junk' DNA now center stage

More information: Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer, nature.com/articles/doi:10.1038/ng.3637

Related Stories

'Junk' DNA now center stage

January 20, 2016
The classes of RNA molecules encoded by DNA sequences previously considered non functional may play a vital role in cell stress responses, and could one day lead to cancer treatments. A*STAR researchers have identified a ...

A noncoding RNA promotes pediatric bone cancer

November 17, 2014
Ewing sarcoma is a cancer of bone or its surrounding soft tissue that primarily affects children and young adults. A hallmark of Ewing sarcoma is a translocation event that results in the fusion of an RNA binding protein, ...

Study discovers link between celiac disease risk and a noncoding RNA

March 31, 2016
Researchers have identified a common variant in a non-coding RNA that may contribute to the intestinal inflammation that occurs in people with celiac disease. The findings point to a possible new risk factor for developing ...

Mechanism affecting risk of prostate cancer is found

January 10, 2014
A research group at Biocenter Oulu in Finland has identified a mechanism related to a transcription factor that binds much more strongly onto a particular SNP variant, thereby initiating a genetic programme which enhances ...

Scientists discover a new role for RNA in safeguarding human chromosome number

December 24, 2015
Molecular biologists at UT Southwestern Medical Center have identified a gene called NORAD that helps maintain the proper number of chromosomes in cells, and that when inactivated, causes the number of chromosomes in a cell ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.