Scientists map brain's action center

August 25, 2016
Salk Institute researchers employed novel genetic tools to map theconnectivity of neurons within a part of the brain, called the striatum,which controls movement toward a goal or reward. The matrix neurons,highlighted in green, appear to avoid the patch neurons (red), which aresmaller clusters of neurons in the striatum. The functions of matrix andpatch neurons are still unknown, but the new research will allowscientists to better understand their connections and control the activityof these neurons in future studies. Credit: Salk Institute

When you reach for that pan of brownies, a ball-shaped brain structure called the striatum is critical for controlling your movement toward the reward. A healthy striatum also helps you stop yourself when you've had enough.

But when the striatum doesn't function properly, it can lead to disorders such as Parkinson's disease, obsessive-compulsive disorder or addiction.

In fact, the exact functions of the striatum are by no means resolved, and it's also a mystery how the structure can coordinate many diverse functions. Now, a new study published August 25, 2016 by Salk Institute researchers and their colleagues in the journal Neuron, delves into the anatomy and function of the striatum by employing cutting-edge strategies to comprehensively map one of the brain's lesser-known forms of organization.

"The most exciting result from this research is that we now have a new avenue to study long-standing questions about how the striatum controls movement in both healthy and diseased brains," says the study's senior investigator Xin Jin, an assistant professor in the Molecular Neurobiology Laboratory at Salk.

Forty years ago, researchers discovered a unique way that the striatum is organized. It is dotted with patch neurons, which under the microscope look like tiny islands of cells. The ocean surrounding them is made up of neurons scientists collectively refer to as "matrix" cells.

Over the course of four decades, scientists hypothesized about the role of patch and matrix neurons in neurodegenerative diseases. One idea was that patch cells were fed by the brain's higher thought centers, suggesting they could play a role in cognition, whereas the matrix cells seemed to play a role in sensing and movement.

In contrast, the new study dispels that idea, showing that both types of information are sent to the patch and matrix neurons, though patch cells tend to receive slightly more information from the brain's emotion centers (these are included in the higher thought centers). But those results could help explain why, in the brains of patients with neurological disorders like Huntington's disease (a affecting movement and other functions), patch cells and matrix cells are both affected, Jin says.

Jin, together with the paper's first authors Jared Smith, Jason Klug and Danica Ross, drew upon several technologies to uncover these new findings. The first was genetic engineering to selectively and precisely target the patch versus matrix neurons; traditionally, researchers used staining methods that were not as exact. Secondly, new neural tracing methods, including one generated by collaborator Edward Callaway and his group at Salk, allowed Jin's team to chart the entire brain's input to the patch and matrix cells and the output of each of the cell types as well. A third major approach, from the field of electrophysiology, enabled the scientists to confirm the connections they had mapped and to understand their strength.

"Much of the previous work on patch and matrix cells inferred their functions based on connectivity with the rest of the brain, but most of those hypotheses were incorrect," Smith says. "With a more precise map of the input and output of patch and matrix cells, we can now make more informed hypotheses."

Patch and matrix neurons are not the only way that neuroscientists understand the striatum. The striatum also contains cells that take two opposing routes—the direct and indirect pathways—that are thought to provide the gas and brakes on movement, so to speak. Those indirect and direct pathways are also crucial for certain behaviors, such as the formation of new habits.

Interestingly, both and matrix groups contain both indirect and direct pathway cells. That makes the story of the striatum more complicated, Jin says, but in future studies his team can study the intersection of these two types of organization in the context of how the controls actions in health and disease.

Explore further: Defect in process that controls gene expression may contribute to Huntington's disease

Related Stories

Defect in process that controls gene expression may contribute to Huntington's disease

August 15, 2016
A protein complex called Polycomb Repressive Complex 2 (PRC2), which plays a critical role in forming specific classes of nerve cells in the brain during development, also plays an important role in the adult brain where ...

Potential therapeutic target for Huntington's disease

August 16, 2016
There is new hope in the fight against Huntington's disease. Scientists at the Gladstone Institutes discovered that changing a specific part of the huntingtin protein prevented the loss of critical brain cells and protected ...

Scientists identify neurochemical signal likely missing in Parkinson's

July 11, 2016
Two Northwestern University neuroscientists have identified the neurochemical signal likely missing in Parkinson's disease by being the first to discover two distinctly different kinds of neurons that deliver dopamine to ...

How the brain triggers action

October 21, 2015
EPFL scientists have identified specific neurons in the striatum that contribute to driving motivated behaviors like movement. The work may help in designing new ways of treating disorders like Parkinson's disease in the ...

New brain map could enable novel therapies for autism and Huntington's disease

June 20, 2016
USC scientists have mapped an uncharted portion of the mouse brain to explain which circuit disruptions might occur in disorders such as Huntington's disease and autism.

Dark neural patches in the neostriatum

March 11, 2015
Researchers at the Okinawa Institute of Science and Technology Graduate University's Brain Mechanisms for Behaviour Unit have found a surprise upon mapping the precise connectivity inside a brain structure called the neostriatum. ...

Recommended for you

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

Researchers identify potential mediator for social memory formation

November 15, 2017
Research by a group of scientists at the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine) have discovered that a tiny brain region plays a critical role in the formation ...

Improving clinical trials with machine learning

November 15, 2017
Machine learning could improve our ability to determine whether a new drug works in the brain, potentially enabling researchers to detect drug effects that would be missed entirely by conventional statistical tests, finds ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.