Gene therapy technique may help prevent cancer metastasis

September 19, 2016 by Helen Knight, Massachusetts Institute of Technology
A new gene therapy technique being developed by researchers at MIT uses microRNAs — small noncoding RNA molecules that regulate gene expression — to control breast cancer metastasis. Credit: Massachusetts Institute of Technology

The spread of malignant cells around the body, known as metastasis, is the leading cause of mortality in women with breast cancer.

Now, a new being developed by researchers at MIT is showing promise as a way to prevent breast cancer tumors from metastasizing.

The treatment, described in a paper published today in the journal Nature Communications, uses microRNAs—small noncoding RNA molecules that regulate gene expression—to control metastasis.

The therapy could be used alongside chemotherapy to treat tumors before they spread, according to Natalie Artzi, a principal research scientist at MIT's Institute for Medical Engineering and Science (IMES) and an assistant professor of medicine at Brigham and Women's Hospital, who led the research in collaboration with Noam Shomron, an assistant professor on the faculty of medicine at Tel-Aviv University in Israel.

"The idea is that if the cancer is diagnosed early enough, then in addition to treating the primary tumor [with chemotherapy], one could also treat with specific microRNAs, in order to prevent the spread of cancer cells that cause metastasis," Artzi says.

The regulation of gene expression by microRNAs is known to be important in preventing the spread of cancer cells. Recent studies by the Shomron team in Tel-Aviv have shown that disruption of this regulation, for example by genetic variants known as single nucleotide polymorphisms (SNPs), can have a significant impact on gene expression levels and lead to an increase in the risk of cancer.

To identify the specific microRNAs that play a role in breast cancer progression and could therefore potentially be used to suppress metastasis, the research teams first carried out an extensive bioinformatics analysis.

They compared three datasets: one for known SNPs; a second for sites at which microRNAs bind to the genome; and a third for breast cancer-related genes known to be associated with the movement of cells.

This analysis revealed a variant, or SNP, known as rs1071738, which influences metastasis. They found that this SNP disrupts binding of two microRNAs, miR-96 and miR-182. This disruption in turn prevents the two microRNAs from controlling the expression of a protein called Palladin.

Previous research has shown that Palladin plays a key role in the migration of , and their subsequent invasion of otherwise healthy organs.

When the researchers carried out in vitro experiments in cells, they found that applying miR-96 and miR-182 decreased the expression of Palladin levels, in turn reducing the ability of breast cancer cells to migrate and invade other tissue.

"Previous research had discussed the role of Palladin in controlling migration and invasion (of ), but no one had tried to use microRNAs to silence those specific targets and prevent metastasis," Artzi says. "In this way we were able to pinpoint the critical role of these microRNAs in stopping the spread of breast cancer."

The researchers then developed a method to deliver engineered microRNAs to breast . They embedded nanoparticles containing the microRNAs into a hydrogel scaffold, which they then implanted into mice.

They found that this allowed efficient and precise delivery of the microRNAs to a target breast cancer tumor site. The treatment resulted in a dramatic reduction in metastasis, says Artzi.

"We can locally change the cells in order to prevent metastasis from occurring," she says.

To increase the effectiveness of the treatment even further, the researchers then added the chemotherapy drug cisplatin to the nanoparticles. This led to a significant reduction in both the growth of the primary tumor, and its metastasis.

"We believe local delivery is much more effective (than systemic treatment), because it gives us a much higher effective dose of the cargo, in this case the two microRNAs and the cisplatin," she says.

"The research offers the potential for combined experimental therapeutics with traditional chemotherapy in cancer ," says Julie Teruya-Feldstein, a professor of pathology at Mount Sinai Hospital in New York, who was not involved in the study.

The research team, which also includes MIT post doc Joao Conde and graduate student Nuria Oliva, both from IMES; graduate student Avital Gilam and postdoc Daphna Weissglas-Volkov, from Tel-Aviv University; and Eitan Friedman, an oncogeneticist from Chaim Sheba Medical Center in Israel, now hopes to move on to larger animal studies of the treatment.

"We are very excited about the results so far, and the efficacy seems to be really good. So the next step will be to move on to larger models and then to clinical trials, although there is still a long way to go," Artzi says.

Explore further: Shrinking tumors with an RNA triple-helix hydrogel glue

More information: Avital Gilam et al. Local microRNA delivery targets Palladin and prevents metastatic breast cancer, Nature Communications (2016). DOI: 10.1038/ncomms12868

Related Stories

Shrinking tumors with an RNA triple-helix hydrogel glue

December 7, 2015
Twenty years ago, scientists discovered that short strands of RNA known as microRNA help cells to fine-tune their gene expression. Disruption or loss of some microRNAs has been linked to cancer, raising the possibility of ...

Cancer cells metastasize by hitching a ride on platelets

September 8, 2016
Metastasis of cancer cells to sites distant from the primary tumor is the leading cause of cancer-related death, and there is growing evidence that platelets aid the dissemination of cancer cells.

A microRNA signature for infantile hemangioma

September 8, 2016
Infantile hemangiomas (IH) are benign vascular tumors occurring in 4-5% of infants. These tumors resolve spontaneously or in response to propranolol treatment; however, they resemble other vascular anomalies and cannot be ...

Study provides new drug target for Her-2 related breast cancer

January 22, 2013
Research led by Dr. Suresh Alahari, the Fred Brazda Professor of Biochemistry and Molecular Biology at LSU Health Sciences Center New Orleans and its Stanley S. Scott Cancer Center, details exactly how the Her2 cancer gene ...

MicroRNA molecule may serve as biomarker, target for brain metastases in breast cancer patients

February 5, 2013
Researchers have identified two molecules that could potentially serve as biomarkers in predicting brain metastases in patients with breast cancer, according to data published in Cancer Research, a publication of the American ...

Therapeutic inhibition of RANK pathway reduces breast cancer recurrence

September 13, 2016
Researchers at the Institute of Biomedical Research of Bellvitge (IDIBELL), led by Dr. Eva Gonzalez-Suarez, have shown that pharmacological and genetic inhibition of signaling pathway RANK / RANKL leads to a significant reduction ...

Recommended for you

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

Presurgical targeted therapy delays relapse of high-risk stage 3 melanoma

January 17, 2018
A pair of targeted therapies given before and after surgery for melanoma produced at least a six-fold increase in time to progression compared to standard-of-care surgery for patients with stage 3 disease, researchers at ...

Dulling cancer therapy's double-edged sword

January 17, 2018
Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.