Human 'junk' gene sequences can promote translation

September 20, 2016
Human
Credit: RIKEN

One of the biggest surprises of the past decade of genomic studies was the discovery that, contrary to previous belief, the majority of the genome is not used to produce proteins. Initially, many scientists thought that these long non-coding RNAs were non-functional "noise," but in recent studies, a growing fraction of these lncRNAs have been found to have regulatory functions.

In 2012, a group from the RIKEN Center for Life Science Technologies, in collaboration with SISSA, an Italian University, discovered a new class of mouse lncRNAs, which are called "antisense" because their can pair with typical protein-coding mRNAs and enhance their translation. The team was surprised to find that pairing these novel antisense RNAs caused the mRNA to be translated more efficiently. This was counterintuitive, because it was generally believed that antisense RNAs always inhibited gene activity. They found that the positive effect on specific mRNA translation was mediated by a sequence embedded in the antisense lncRNA. This element turned out to be a member of what is known as the SINE family, standing for "short interspersed elements," which are very broadly distributed throughout the genome. They were long considered to be part of the "junk" of the genome—remnants of ancient parasites in the genome capable of making copies of themselves, filling up the genome with junk.

Specifically, the repeat elements discovered during the earlier research belonged to the SINEB2 class, which is present only in rodent genomes. Artificial RNAs containing these SINEB2 elements, which can be made to target any RNA by simply engineering the antisense region, are called SINEUPs (RNA containing SINE elements that UP-regulate translation). Due to the peculiar evolution of the mouse SINEB2 elements, which are thought to have co-evolved from an ancestor sequence similar to tRNAs, natural SINEUPs were thought to exist only in mice.

Human
Comparison of mouse SINEB2 elements and human FRAM elements. Credit: RIKEN

Now, in a discovery reported in Scientific Reports, the group found a group of human sequences—unrelated to those in mice—which were also capable of producing SINEUPs. The group carried out a broad screening of RNA sequences from humans and tested the function of various antisense RNAs to see if they could have SINEUP functionality. Surprisingly, they found that human SINE elements of a very different type from the mouse SINEB2—called FRAM and MIRb—could. According to Piero Carninci of CLST, who led the team, "This was very surprising, because unlike the mouse SINEB2, the human ones resemble unrelated families of non-coding RNAs. We were even more surprised when we looked at the similarity between the mouse and human sequences: the newly discovered FRAM elements share less than 30% of their sequences with the mouse SINEB2 elements, yet they function in a very similar fashion, by enhancing translation of mRNAs they overlap."

"As in the mouse," he continues, "the human elements can be used in biotechnological applications to target mRNA encoding different proteins, by simply engineering the antisense part. Although the primary sequence is so different, the human and the mouse may fold in a similar way and hence have similar function. The structural basis for this functions are yet unknown, and this remains an exciting remaining question."

SINEUPs are currently used in biotechnology applications, to specifically stimulate the translation of mRNAs to produce more proteins both in cell cultures to study gene function and to produce biological proteins in bioreactors. Additionally, laboratories around the world are working to develop SINEUPs to enhance protein translation as a therapy for specific diseases caused by the deficiency of a specific protein, such as haploinsufficiencies, where one of two genes is not functional. According to Carninci, "Our discovery provides one more weapon to the SINEUP toolbox to broaden the scope of gene therapy, as well as to express a greater variety of proteins."

Explore further: Non-coding antisense RNA can be used to stimulate protein production

More information: Aleks Schein et al. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells, Scientific Reports (2016). DOI: 10.1038/srep33605

Related Stories

Non-coding antisense RNA can be used to stimulate protein production

October 16, 2012
While studying Parkinson's disease, an international research group made a discovery which can improve industrial protein synthesis for therapeutic use. They managed to understand a novel function of non-protein coding RNA: ...

Function of mysterious RNAs may often lie in their genes

April 7, 2016
A new genetic clue discovered by a team co-led by a researcher at the Perelman School of Medicine at the University of Pennsylvania is shedding light on the functions of the mysterious "long non-coding RNAs" (lncRNAs). These ...

Transcription of host noncoding DNA elements signals viral intrusion but is hijacked by gammaherpesvirus

November 19, 2015
Mammalian DNA, including the human genome, contains about 1 million SINEs (short interspersed nuclear elements), noncoding mobile genetic elements that make up about 10% of the total genome. SINEs are normally silent, though ...

Controlling RNA in living cells: Modular, programmable proteins can be used to track or manipulate gene expression

April 25, 2016
MIT researchers have devised a new set of proteins that can be customized to bind arbitrary RNA sequences, making it possible to image RNA inside living cells, monitor what a particular RNA strand is doing, and even control ...

'Junk' DNA now center stage

January 20, 2016
The classes of RNA molecules encoded by DNA sequences previously considered non functional may play a vital role in cell stress responses, and could one day lead to cancer treatments. A*STAR researchers have identified a ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.