Non-coding antisense RNA can be used to stimulate protein production

October 16, 2012, RIKEN
SINEUPs are non-coding antisense RNAs, containing SINEB2 element, which can be used to target protein coding RNAs and stimulate protein production. By changing the "target antisense sequence" region, any mRNA ("your gene") can be targeted to stimulate protein production, mediated by the "protein synthesis activation domain." Credit: RIKEN

While studying Parkinson's disease, an international research group made a discovery which can improve industrial protein synthesis for therapeutic use. They managed to understand a novel function of non-protein coding RNA: the protein synthesis activity of coding genes can be enhanced by the activity of the non-coding one called "antisense."

To synthesize proteins, the DNA needs RNA molecules serving as short "transcriptions" of the . The set of all these is called "transcriptome." In the human transcriptome, along with around 25 thousand sequences of coding RNA (i.e. the sequences involved in the synthesis process), an even larger number of non-coding can be found. Some of these RNAs are called "antisense" because they are complementary to sequences of coding RNA called "sense" (the pairing of a sense and an antisense RNA can be seen as a zip).

The RIKEN Omics Science Center has previously discovered that many of the protein coding have corresponding antisense RNAs. A study published in Nature, coordinated by a group of SISSA researchers in Trieste, Italy, has now found that a particular type of antisense RNAs stimulate the translation of the protein coding mRNAs that they overlap to. This is in sharp contrast with the current belief that antisense RNAs are universally associated to negative regulation of .

Most of the is transcribed producing non-coding RNA. The RIKEN FANTOM projects have earlier demonstrated that the largest output of the genome is constituted by non-coding RNAs. More than 70% of the mRNAs are associated in cells with non-coding antisense RNAs, which are usually thought to negatively repress transcription or translation.

In an exceptional collaborative study based on RIKEN FANTOM sense-antisense cDNA clones, the (including SISSA and the RIKEN Omics Science Center) has found a class of non-coding antisense RNAs that do the contrary of what is currently known: enhance translation of mRNAs with which they are pairing. The researchers identified this studying the antisense of the mRNA of Uchl1, a mouse gene involved in brain function and neurodegenerative diseases. The team, using bioinformatics and data-mining at RIKEN, has also discovered that the antisense of Uchl1 RNA is not a single case but instead is the representative of a larger class of mammalian antisense RNAs, which function is to increase translation. This is the first report of an antisense RNA that increases protein production, which works both in mouse and human cells and is predicted to have similar function in other organisms.

The mechanism to stimulate translation is based on increased association of mRNAs with ribosomes, which is mediated by a SINEB2 element, a repetitive sequence in the antisense of Uchl1 RNA, which is placed in an inverted orientation in the non-coding RNA. The specificity is given by a short antisense RNA sequence that hybridizes with the initial part of the protein encoding mRNA.

Why is it an important discovery?

Very little used to be known about "long, non-coding" RNAs and this new research sheds light on some of these molecules. "We focused on one gene, Uchl1, whose mutations are linked to some hereditary types of Parkinson's disease," stated Stefano Gustincich, Professor at SISSA. "We have seen that the non-coding antisense RNA matched to this gene is made up of two fragments, the real antisense fragment matching with the sense RNA that codifies the protein and the SineB2 sequence. The antisense fragment has the function of a 'lock' into which the key of the coding RNA specific for that gene is inserted, while the other one has a stimulating function on protein synthesis."

If you change the antisense fragment with the analogous of another gene, the SineB2 sequence maintains its stimulating function on the new gene. "This is important," explained Gustincich "because it means that the action of sineB2 could be used to stimulate for therapeutic use – any protein – in industrial synthesis processes."

"We are delighted to see that there is one more function for long non-coding RNAs," says Piero Carninci, Team Leader at RIKEN OSC. "Since the initial discovery that the majority of the genome produces so many non-coding RNAs, there has been a general skepticism related to the possible function of these RNAs. This is a milestone study identifying a novel class of non-coding RNAs which have a key regulatory function, enhancing protein translation. Additionally, this function is mediated by repetitive elements, so far generally considered the 'junk' fraction of the genome, suggesting that the concept that most of the genome is 'junk' should be revisited. After all, there may be function embedded in any part of the genome, which we do not yet understand."

RIKEN and the RIKEN venture company TransSINE Technologies are committed to exploit commercial applications of this specific structure of the antisense .

These RNAs, called SINEUPs, can be engineered to stimulate translation of other proteins, by changing the overlapping antisense region to target any of industrial or therapeutic interest. Initial target proteins will include therapeutic proteins, like antibodies or other soluble factors, as well as other basic studies to understand gene function by overexpression of proteins. RIKEN believes that this work can be broadly used.

Explore further: Non-coding RNA has role in inherited neurological disorder -- and maybe other brain diseases too

More information: Claudia Carrieri, Marta Biagioli, Laura Cimatti, Anne Beugnet, Isidre Ferrer, Silvia Zucchelli, Stefano Biffo, Allistar Forrest, Piero Carninci, Elia Stupka, and Stefano Gustincich. "Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat." Nature, 2012, DOI: 10.1038/nature11508

Related Stories

Non-coding RNA has role in inherited neurological disorder -- and maybe other brain diseases too

June 21, 2011
A team of scientists, led by researchers at the University of California, San Diego School of Medicine, have uncovered a novel mechanism regulating gene expression and transcription linked to Spinocerebellar ataxia 7, an ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.