Tackling tumors: Researcher using nanotechnology to target inoperable tumors from the inside out

September 27, 2016 by Jeremy Agor, University of Texas at Arlington

Many solid tumors are considered inoperable because they adhere to vital structures or the surgery would cause irreversible damages to the patients. In order to prevent the tumor growth or provide complete tumor resolution without surgery, chemotherapy and radiation are currently in clinical practice.

Unfortunately, severe adverse side effects are usually associated with these therapeutic methods. Since these tumors are already locally advanced or have begun to metastasize, the outlook today for these cancer patients is bleak and survival rate remains very low.

Yaowu Hao, an associate professor in the Materials Science and Engineering Department at The University of Texas at Arlington, has earned a three-year, $477,000 R15 grant from the National Institutes of Health to develop radiotherapeutic nanoseeds that will work from inside inoperable solid tumors and cause less damage to healthy cells.

The research also was featured in a Scientific Reports paper published earlier this year titled "Theranostic Nanoseeds for Efficacious Internal Radiation Therapy of Unresectable Solid Tumors."

Inoperable solid tumors are often targeted with radiation. One way of applying the radiation is to surgically implant a 2-millimeter-by-5-millimeter "seed" with therapeutic isotopes into the tumor. Two millimeters is about seven one-hundredths of an inch.

This procedure is highly invasive and can only be used in certain parts of the body – usually the prostate – because of the damage caused by the implantation process and the fact that a foreign object remains inside the patient's body after treatment.

Instead, Hao has developed biocompatible nanoseeds that are injectable with a very small needle and cause limited trauma to surrounding tissue. Because the nanoseeds are injectable, they can be used in tumors in other areas of the body, such as the brain, lungs and liver.

"Our main breakthrough is the development of uniquely coated gold nanoparticles that act as a carrier for the radioactive isotopes," Hao said. "We chose gold because it is inert and biocompatible. The nanoseed is about 100 nanometers in size, so it is small enough to be injected in solution but large enough that it will not spread out of the tumor."

This type of is highly effective in attacking a tumor, but is also safer for the surrounding tissue because the radiation is contained within the tumor.

Hao said another benefit is that because the seeds are injectable, it is much easier to control the radiation dosages.

Stathis Meletis, chair of UTA's Materials Science and Engineering Department, says that Hao's grant is an excellent example of UTA's emphasis on health and the human condition contained within the Strategic Plan 2020: Bold Solutions | Global Impact.

"Dr. Hao has discovered a breakthrough in cancer treatment that could have far-reaching benefits. This grant will allow him to build upon his preliminary results and develop a treatment method that is aggressive and effective in eliminating tumors," Meletis said.

Hao joined UTA in 2005 following a postdoctoral fellowship at Johns Hopkins University. His research focuses on synthesis, characterization and applications of metal and magnetic nanostructures.

Explore further: Potential new technique for anticancer radiotherapy could provide alternative to brachytherapy

Related Stories

Potential new technique for anticancer radiotherapy could provide alternative to brachytherapy

November 15, 2012
A promising new approach to treating solid tumors with radiation was highly efficacious and minimally toxic to healthy tissue in a mouse model of cancer, according to data published in Cancer Research, a journal of the American ...

Breakthrough technology offers new treatment for patients with hard-to-reach tumors

May 4, 2016
An enormous high tech machine is providing new hope to patients across the country with inoperable tumors. Proton therapy is a precise radiation technique that reduces the side effects often accompanied by traditional treatment ...

Researchers discover liver metastases have different radiation sensitivities based on primary tumor histology

April 12, 2016
Radiation is a commonly used therapeutic option to treat liver metastases, with the majority of tumors maintained under control after one year. However, some patients do not respond as well to radiation treatment, and the ...

Carbon ion radiotherapy safe and effective for treating inoperable spinal tumors

August 12, 2013
A new analysis has found that a type of radiation therapy called carbon ion radiotherapy can control cancer growth and prolong survival in patients with spinal tumors. Published early online in Cancer, a peer-reviewed journal ...

Researcher develops new, non-invasive method to wipe out cancerous tumors

June 27, 2016
Matthew Gdovin, an associate professor in the UTSA Department of Biology, has developed a newly patented method to kill cancer cells. His discovery, described in a new study in The Journal of Clinical Oncology, may tremendously ...

Recommended for you

Immunotherapy combo not approved for advanced kidney cancer patients on the NHS

December 14, 2018
People with a certain type of advanced kidney cancer will not be able to have a combination of two immunotherapy drugs on the NHS in England.

New drug seeks receptors in sarcoma cells, attacks tumors in animal trials

December 13, 2018
A new compound that targets a receptor within sarcoma cancer cells shrank tumors and hampered their ability to spread in mice and pigs, a study from researchers at the University of Illinois reports.

Surgery unnecessary for many prostate cancer patients

December 13, 2018
Otherwise healthy men with advanced prostate cancer may benefit greatly from surgery, but many with this diagnosis have no need for it. These conclusions were reached by researchers after following a large group of Scandinavian ...

Combining three treatment strategies may significantly improve melanoma treatment

December 12, 2018
A study by a team led by a Massachusetts General Hospital (MGH) investigator finds evidence that combining three advanced treatment strategies for malignant melanoma—molecular targeted therapy, immune checkpoint blockade ...

Researchers use computer model to predict prostate cancer progression

December 12, 2018
An international team of cancer researchers from Denmark and Germany have used cancer patient data to develop a computer model that can predict the progression of prostate cancer. The model is currently being implemented ...

New insight into stem cell behaviour highlights therapeutic target for cancer treatment

December 12, 2018
Research led by the University of Plymouth and Technische Universität Dresden has identified a new therapeutic target for cancer treatment and tissue regeneration – a protein called Prominin-1.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.