Twin research helps unravel the genetic blueprint of the human brain

September 6, 2016
brain
Credit: public domain

An internationally significant study of healthy twins, 65 years of age or older, has unlocked important clues about how genes influence the development of key grey matter structures, paving the way for a genetic blueprint of the human brain.

A team led by researchers from UNSW Medicine analysed the MRI scans of 322 individuals from the Older Australian Twins Study. The objective was to map the genetic relatedness (or heritability) of cortical and subcortical structures in their brains. These structures are responsible for functions ranging from memory and visual processing, to motor control.

"We know that genes strongly underpin development," says lead researcher Associate Professor Wei Wen from the Centre for Healthy Brain Ageing (CHeBA) at UNSW. "But we still don't understand which specific genes are implicated, or how they contribute to different brain structures."

"In order to identify these genes, we need to first know whether they are shared by different parts of the brain, or unique to a single structure," he says. "This is the first attempt to examine genetic correlations between all of the brain's structures, using the twin design."

The UNSW-led team analysed MRI scans of 93 sets of and 68 sets of fraternal twins. These participants were all Caucasian men and women without dementia, with an average age of 70, living in the Eastern states of Australia. The scientists measured the volume of their brain structures (12 in total) and, using statistical and genetic modelling, determined the heritability for each. Heritability is the extent to which genes contribute to phenotypic, or physical, differences.

The team reported several key findings today in the journal Scientific Reports:

  • The data suggest that the volume of cortical and subcortical brain structures have moderate to strong (between 40 and 80%);
  • The subcortical hippocampus, which play a key role in memory processes, has a genetic contribution greater than 70% in older people;
  • Cortical structures, including the frontal lobe (movement, memory and motivation) and occipital lobe (visual processing), have genetic contributions greater than 70%;
  • There is symmetry in the brain: corresponding structures in the left and right hemispheres were influenced by the same genetic factors;
  • And finally, their data suggests that there are three genetically correlated clusters within the brain. These are regions where the same sets of genes seem to be influencing multiple structures. One cluster involves the four cortical lobe structures, while the other two involve clusters of subcortical structures.

"The presence of these three genetically correlated clusters is the most significant result, and is where the novelty of the work lies," says Scientia Professor Perminder Sachdev, a neuropsychiatrist and co-director of CHeBA at UNSW.

"It gives us a blueprint for forming a new model of the brain, subdivided into genetically linked structures. This we can apply to the analysis of big data, and use to more effectively hunt for the specific involved in brain development."

Sachdev says the classical twin design is an important tool for understanding whether physical or behavioural traits have a genetic determinant.

Twin studies compare the similarity of a given trait (or characteristic) between monozygotic (identical) twins, who share 100% of their DNA, and dizygotic (fraternal) twins, who share 50% of their DNA. In these studies, if a physical trait is considerably more similar for identical twins than fraternal twins, this suggests a strong genetic contribution.

Despite finding strong genetic contributions across all structures examined, Sachdev says he was surprised by the low genetic correlation between cortical and subcortical structures. These structures tended to have unique genetic determinants, and were only weakly related.

"It's a reminder that the brain is an incredibly complex organ, which cannot be treated as a homogenous for genetic purposes," he says.

The researchers are hopeful that their results will lead to progress in the field and a better understanding of the genetic blueprint of the human brain: "This is one of the crucial first steps that needed to be taken," says Sachdev.

"It's a long way away, but if we can understand the genetic basis for variability in human brains, we can begin to understand the mechanisms that cause these differences, and that also underpin the development of diseases in future."

Explore further: Researchers discover genetic variants that alter brain development

More information: Wei Wen et al, Distinct Genetic Influences on Cortical and Subcortical Brain Structures, Scientific Reports (2016). DOI: 10.1038/srep32760

Related Stories

Researchers discover genetic variants that alter brain development

January 22, 2015
Researchers have identified five genetic variants that influence the size of structures within the brain, a discovery that could help determine the genetic processes that underlie neuropsychiatric diseases.

Twin study: Genetics and environment affect different regions of the brain

March 1, 2016
A recent study, reported in the March issue of The Journal of Nuclear Medicine, found evidence that genetic influence on cerebral glucose metabolism played a major role in the bilateral parietal lobes and the left temporal ...

Genetic factors are responsible for creating anatomical patterns in the brain cortex

July 26, 2016
The highly consistent anatomical patterning found in the brain's cortex is controlled by genetic factors, reports a new study by an international research consortium led by Chi-Hua Chen of the University of California, San ...

Feeling heavy, light, or about right? Your genes may be to blame

August 31, 2016
Do you feel overweight, about right, or too skinny? Your answer to that question may be tied to genes you inherited from your parents, especially if you are a female, according to a new study led by the University of Colorado ...

Genes are not destiny: Environment and education still matter when it comes to intelligence

August 22, 2016
Recent research has suggested that academic performance, reading ability and IQ have a genetic basis. This reinforces the popular notion that intelligence and related cognitive capacities are somehow "in our genes".

Heredity is a major factor in ADHD, binge eating and alcohol dependence

September 6, 2016
It is principally hereditary factors that lead to adults with ADHD developing alcohol dependence and binge eating. This is the conclusion of a doctoral thesis from Linköping University. Since heredity plays such a large ...

Recommended for you

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.