Can the brain feel it? The world's smallest extracellular needle-electrodes

October 25, 2016
Extracellular needle-electrode with a diameter of 5 μm mounted on a connector. Credit: (c) Toyohashi University Of Technology

A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology developed 5-μm-diameter needle-electrodes on 1 mm × 1 mm block modules. This tiny needle may help solve the mysteries of the brain and facilitate the development of a brain-machine interface. The research results were reported in Scientific Reports on Oct 25, 2016.

The neuron networks in the human brain are extremely complex. Microfabricated silicon needle-electrode devices were expected to be an innovation that would be able to record and analyze the electrical activities of the microscale neuronal circuits in the brain.

However, smaller needle technologies (e.g., needle diameter < 10 μm) are necessary to reduce damage to . In addition to the needle geometry, the device substrate should be minimized not only to reduce the total amount of damage to tissue but also to enhance the accessibility of the electrode in the brain. Thus, these electrode technologies will realize new experimental neurophysiological concepts.

A research team in the Department of Electrical and Electronic Information Engineering and the EIIRIS at Toyohashi University of Technology developed 5-μm-diameter needle-electrodes on 1 mm × 1 mm block modules.

The individual microneedles are fabricated on the block modules, which are small enough to use in the narrow spaces present in brain tissue; as demonstrated in the recording using mouse cerebrum cortices. In addition, the block module remarkably improves the design variability in the packaging, offering numerous in vivo recording applications.

"We demonstrated the high design variability in the packaging of our electrode device, and in vivo neuronal recordings were performed by simply placing the device on a mouse's brain. We were very surprised that high quality signals of a single unit were stably recorded over a long period using the 5-μm-diameter needle," explained the first author, Assistant Professor Hirohito Sawahata, and co-author, researcher Shota Yamagiwa.

The leader of the research team, Associate Professor Takeshi Kawano said: "Our silicon needle technology offers low invasive neuronal recordings and provides novel methodologies for electrophysiology; therefore, it has the potential to enhance experimental neuroscience." He added, "We expect the development of applications to solve the mysteries of the brain and the development of brain-machine interfaces."

Explore further: Super-small needle technology for the brain

More information: H. Sawahata et al, Single 5 μm diameter needle electrode block modules for unit recordings in vivo, Scientific Reports (2016). DOI: 10.1038/SREP35806

Related Stories

Super-small needle technology for the brain

August 10, 2015
Microscale needle-electrode array technology has enhanced brain science and engineering applications, such as electrophysiological studies, drug and chemical delivery systems, and optogenetics.

Conclusions on brain-machine interfaces for communication and rehabilitation

October 5, 2016
In the journal Nature Reviews Neurology, the researcher Ander Ramos of Tecnalia, with Niel Birbaumer, lecturer at the University of Tübingen, have expounded how brain-machine interfaces (BMI) use brain activity to control ...

Breakthrough for electrode implants in the brain

October 8, 2015
For nearly nine years, researchers at Lund University have been working on developing implantable electrodes that can capture signals from single neurons in the brain over a long period of time - without causing brain tissue ...

Recommended for you

Research reveals 'exquisite selectivity' of neuronal wiring in the cerebral cortex

August 21, 2017
The brain's astonishing anatomical complexity has been appreciated for over 100 years, when pioneers first trained microscopes on the profusion of branching structures that connect individual neurons. Even in the tiniest ...

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.