Conclusions on brain-machine interfaces for communication and rehabilitation

October 5, 2016, Elhuyar Fundazioa

In the journal Nature Reviews Neurology, the researcher Ander Ramos of Tecnalia, with Niel Birbaumer, lecturer at the University of Tübingen, have expounded how brain-machine interfaces (BMI) use brain activity to control external devices, thus enabling seriously disabled patients to interact with the environment.

The paper "Brain-computer interfaces for communication and rehabilitation" explores invasive and non-invasive techniques for brain-machine control, including EEGs, and, more recently, those involving . Brain-machine assistive interfaces are designed to enable paralysed patients to communicate with or control external robotic devices such as prostheses; brain-machine interfaces for rehabilitation are designed to facilitate neuronal function recovery.

This review provides a summary of the development of brain-machine interfaces and of the technology that is currently awaiting clinical studies. It deals firstly with the use of brain-machine interfaces for communication in , in particular in those with locked-in syndrome resulting from .

The use of brain-machine interfaces for motor rehabilitation following a serious cerebrovascular accident or stroke and damage to the spinal cord are discussed. The possible neurophysiological and learning mechanisms underpinning the clinical effectiveness of brain-machine interfaces are also described.

Explore further: A new window to understanding the brain

More information: Ujwal Chaudhary et al, Brain–computer interfaces for communication and rehabilitation, Nature Reviews Neurology (2016). DOI: 10.1038/nrneurol.2016.113

Related Stories

A new window to understanding the brain

August 29, 2016
Scientists in recent years have made great strides in the quest to understand the brain by using implanted probes to explore how specific neural circuits work.

When the neuroprosthetics learn from the patient

September 11, 2015
While it takes a long time to learn to control neuroprosthetics, Jose Millán research, published in Nature Scientific Reports, will enable the creation of a new generation of self-learning and easy-to-use devices.

Paraplegics regain some feeling, movement after using brain-machine interfaces

August 11, 2016
Eight people who have spent years paralyzed from spinal cord injuries have regained partial sensation and muscle control in their lower limbs after training with brain-controlled robotics, according to a study published Aug. ...

Eliciting brain plasticity to keep the body moving

April 1, 2014
With support from the National Science Foundation's (NSF) Emerging Frontiers of Research and Innovation (EFRI) program, bioengineer Gert Cauwenberghs, of the Jacobs School of Engineering and the Institute for Neural Computation ...

Researcher creates system to control robots with the brain

July 14, 2016
A researcher at Arizona State University has discovered how to control multiple robotic drones using the human brain.

Recommended for you

New technique helps uncover changes in ALS neurons

June 22, 2018
Northwestern Medicine scientists have discovered that some neurons affected by amyotrophic lateral sclerosis (ALS) display hypo-excitability, using a new method to measure electrical activity in cells, according to a study ...

Watching stem cells repair spinal cord in real time

June 22, 2018
Monash University researchers have restored movement and regenerated nerves using stem cells in zebra fish where the spinal cord is severely damaged.

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Scientists discover how brain signals travel to drive language performance

June 21, 2018
Effective verbal communication depends on one's ability to retrieve and select the appropriate words to convey an intended meaning. For many, this process is instinctive, but for someone who has suffered a stroke or another ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.