Eliciting brain plasticity to keep the body moving

April 1, 2014 by Miles O'brien
Eliciting brain plasticity to keep the body moving
Biomedical engineer Bin He and his team at the University of Minnesota have created a brain-computer interface with the goal of helping people with disabilities, such as paralysis, regain the ability to do everyday tasks. The researchers are testing out their system using a flying object, known as a quadcopter, and controlling it with someone's thoughts! For the experiments, the team uses both an actual flying quadcopter and a virtual one. In both experiments, the interface is non-invasive so there are no implants. Participants wear an electro-encephalography, or EEG, cap with 64 electrodes. When the participant thinks about a specific movement, neurons in his or her brain's motor cortex produce tiny electric signals, which are sent to a computer. The computer processes the signals and sends directions through a Wi-Fi system to direct the quadcopter. Credit: Science Nation, National Science Foundation

With support from the National Science Foundation's (NSF) Emerging Frontiers of Research and Innovation (EFRI) program, bioengineer Gert Cauwenberghs, of the Jacobs School of Engineering and the Institute for Neural Computation at the University of California (UC), San Diego, and his colleagues are working to understand how brain circuitry controls how we move. The goal is to develop new technologies to help patients with Parkinson's disease and other debilitating medical conditions navigate the world on their own.

"Parkinson's disease is not just about one location in the brain that's impaired. It's the whole body. We look at the problems in a very holistic way, combine science and clinical aspects with engineering approaches for technology," explains Cauwenberghs. "We're using advanced technology, but in a means that is more proactive in helping the brain to get around some of its problems—in this case, Parkinson's disease—by working with the brain's natural plasticity, in wiring connections between neurons in different ways."

The video will load shortly

Outcomes of this research are contributing to the system-level understanding of human-machine interactions, and motor learning and control in real world environments for humans, and are leading to the development of a new generation of wireless brain and body activity sensors and adaptive prosthetics devices. Besides advancing our knowledge of human-machine interactions and stimulating the engineering of new brain/body sensors and actuators, the work is directly influencing diverse areas in which humans are coupled with machines. These include -machine interfaces and telemanipulation.

Explore further: You can't dismiss brain imaging as just an academic gimmick

Related Stories

You can't dismiss brain imaging as just an academic gimmick

March 26, 2014
Given the media coverage brain imaging studies get, you might think that they are constantly revealing important secrets about this mysterious organ.

BRAIN initiative seeks tools to understand human thought, behavior, consciousness

April 24, 2013
The newly proposed scientific project to understand the most complicated 3 pounds of material in the world—the human brain—is the topic of an article in the current edition of Chemical & Engineering News, the weekly newsmagazine ...

Electrical stimulation helps stroke patients learning to use brain-controlled robot arm

March 24, 2014
Patients suffering from paralysis may soon be able to control a robot arm with the electrical activity in their brains using a brain-machine interface. Considerable training is required before a person can use the system ...

Ultra-high-field MRI may allow earlier diagnosis of Parkinson's disease

March 5, 2014
New research shows that ultra-high-field magnetic resonance imaging (MRI) provides detailed views of a brain area implicated in Parkinson's disease, possibly leading to earlier detection of a condition that affects millions ...

Exploring the brain for keys to solving Parkinson's disease

March 26, 2014
One of the final frontiers of science is the human brain. The brain is the source of our intelligence, feelings and ability to make our bodies move – as well as the locus of terrible diseases such as Parkinson's and Alzheimer's ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.