Exploring the brain for keys to solving Parkinson's disease

March 26, 2014
James M. Tepper points to a microscopic brain image that he is studying for potential clues to Parkinson's and other diseases.

One of the final frontiers of science is the human brain. The brain is the source of our intelligence, feelings and ability to make our bodies move – as well as the locus of terrible diseases such as Parkinson's and Alzheimer's – and is as complicated as any object that scientists explore.

James M. Tepper, a professor of neuroscience at Rutgers University-Newark, is one of those explorers. For more than three decades, he and his colleagues have added to understanding of the and its innermost workings, much as explorers on ships added methodically to long-incomplete maps of the New World. The voyagers documented land masses and waterways. Tepper maps the myriad that course through the brain.

"It's a bit like someone handing you a circuit without a circuit diagram," Tepper explains, "but you have the circuit board in front of you, and you have volt meters and stimulators. Your job is to be able to decode the circuit and try to figure out what connects to what and, when it does connect there, what does it do."

So intricate is Tepper's work that he doesn't even study the entire brain. His territory is the striatum, the largest portion of the , a set of structures below the cerebral cortex involved in voluntary motor behavior as well as cognition, learning and memory, emotion and motivation.

Parkinson's disease, which experts say affects more than six million people around the world, can progressively degrade many of those functions, a primary reason why last September the National Institutes of Health awarded Tepper a five-year, $3.4 million grant to delve ever more deeply into the circuitry and function of the striatum.

"The NIH is well aware that the basal ganglia probably hold the key to finding a pathway to curing Parkinson's," says Denis Paré, director of the Center for Molecular and Behavioral Neuroscience at Rutgers University-Newark. "Jim Tepper has distinguished himself over many years as a leader in unlocking the secrets of the striatum and the basal ganglia."

One way to understand Parkinson's, according to Tepper, is to think of the screeching feedback that reverberates through a room when a microphone is held too close to a very loud speaker. Until it subsides, the senses of people in the room are overwhelmed. The process in the brain is, of course, much more complicated, but Tepper says "a feedback loop gone crazy" is an essential mechanism of Parkinson's.

In a brain that functions normally, the billions of electrical impulses that neurons generate each second are generally independent of one another. But in Parkinson's, for unknown reasons, many of the impulses occur simultaneously, synchronize with one another and then bounce back and forth in unison between brain structures called the subthalamus and the globus pallidus, and elsewhere, generating their own form of pathological feedback.

Tepper says this "perfect storm" then overwhelms the brain's ability to focus on muscle movement, memory and more. Unfortunately, the brain does not have a simple volume control to tame the howling neurological noise, a problem that probably cannot be solved at least until researchers like Tepper can fill in more gaps in the map of the brain's circuitry.

Tepper's role is especially important given the complexities of another potential path to solving Parkinson's. Unlike Huntington's disease, whose origins have been traced to mutations in a single gene, Tepper says Parkinson's comes from a constellation of genes, making it difficult to pinpoint specific genetic defects and produce gene-based therapies to reverse them. So in the quest for a Parkinson's cure, mapping the circuitry of the brain may be the most promising option, at least for the foreseeable future.

New tools are helping. One that excites Tepper is the ability to spot previously unidentifiable cells through genetic manipulation that turns cells with particular properties bright green when they are seen through a microscope. With that technique, Tepper and his team uncovered "several new kinds of cells in the striatum that nobody had ever been able to record from because there was no way to look at them and identify them or record their physiological properties." Also, by inserting a light-sensitive bacterial protein called channel rhodopsin – similar to the light-sensing protein found in the retina of the eye – into cells whose characteristics they want to examine, Tepper has been able to cause specific neurons to fire under controlled conditions by shining laser light on them. Each technique helps to identify just a bit more of the circuitry that governs brain function.

Tepper's work to reveal the intricacies of the brain has been long and painstaking, and will continue to be. "We don't have patients," he emphasizes. "We have cells and microcircruits." On its own, Tepper says, his research will not uncover cures for Parkinson's and other maladies that originate in the brain. But, he adds, "To understand what Parkinson's disease is and how it comes about, one of the things you have to understand is how the works. That is what we work on."

Few are better positioned to succeed than Tepper, according to colleagues. "If Jim Tepper can uncover truly important mechanisms within the brain that were previously unknown and help pave the way to a Parkinson's cure," Paré says, "he will earn the gratitude of future researchers and patients alike."

Explore further: Deep brain stimulation may help with driving for people with Parkinson's disease

Related Stories

Deep brain stimulation may help with driving for people with Parkinson's disease

December 18, 2013
Deep brain stimulation may have a beneficial effect on driving ability for people with Parkinson's disease, according to a new study published in the December 18, 2013, online issue of Neurology, the medical journal of the ...

Perception and preference may have genetic link to obesity

March 5, 2012
About five years ago, animal studies first revealed the presence of entirely novel types of oral fat sensors or receptors on the tongue. Prior to this time, it was believed that fats were perceived only by flavor and texture ...

Stress-induced depression exacerbates Parkinson's

March 6, 2014
(Medical Xpress)—Chronic stress-induced depression exacerbated an experimental model of Parkinson's disease, researchers at the University of Cincinnati (UC) have shown.

Scientists redefine how the brain plans movement

February 3, 2014
(Medical Xpress)—University of Queensland researchers have made a surprise discovery about how the brain plans movement that may lead to more targeted treatments for patients with Parkinson's disease.

Can a virtual brain replace lab rats?

February 14, 2014
Testing the effects of drugs on a simulated brain could lead to breakthrough treatments for neurological disorders such as Parkinson's, Huntington's and Alzheimer's disease.

Recommended for you

Waterlogged brain region helps scientists gauge damage caused by Parkinson's disease

July 26, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson's disease, which destroys neurons important for movement. The development suggests that fluid changes ...

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

Predicting cognitive deficits in people with Parkinson's disease

June 20, 2017
Parkinson's disease (PD) is commonly thought of as a movement disorder, but after years of living with PD approximately twenty five percent of patients also experience deficits in cognition that impair function. A newly developed ...

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017
Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal ...

CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.