Caloric restriction can be beneficial to the brain, study shows

October 19, 2016, FAPESP

Studies of different animal species suggest a link between eating less and living longer, but the molecular mechanisms by which caloric restriction affords protection against disease and extends longevity are not well understood.

New clues to help solve the mystery are presented in an article published in the September issue of Aging Cell by scientists at the Center for Research on Redox Processes in Biomedicine (Redoxoma), one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP.

The results of in vitro and in vivo experiments performed by the Redoxoma team included the finding that a 40% reduction in dietary caloric intake increases mitochondrial calcium retention in situations where intracellular calcium levels are pathologically high. In the brain, this can help avoid the death of neurons that is associated with Alzheimer's disease, Parkinson's disease, epilepsy and stroke, among other neurodegenerative conditions.

Mitochondria are organelles that keep cells full of energy and regulate cellular metabolism.

"More than promoting the advantages of eating frugally, we aim to understand the mechanisms that make not overconsuming calories better for health. This can point to new targets for the development of drugs against various diseases," said Ignacio Amigo, lead author of the article. The investigation was conducted at the University of São Paulo's Chemistry Institute (IQ-USP) in Brazil during Amigo's postdoctoral .

According to Amigo, calcium participates in the process of communication between neurons. However, Alzheimer's disease and other neurological disorders can cause an excessive influx of calcium ions into brain cells due to overactivation of neuronal glutamate receptors. This condition, known as excitotoxicity, can damage and even kill neurons.

To verify the effect of caloric restriction on excitotoxicity, Redoxoma's scientists compared two groups of mice and rats. The control animals were given food and water ad libitum for 14 weeks and were overweight at the end of the experiment. The other group received a 40% caloric restriction (CR) diet for the same period.

"We calculated the daily amount of calories consumed on average by the control group and offered the other group 40% less," Amigo explained. "They didn't become underweight and remained healthy, although we supplemented their diet with vitamins and minerals to avoid malnutrition due to the restricted amount of food."

In the first test, the animals were injected with kainic acid, a glutamate analogue with a similar effect in terms of inducing neuronal calcium influx, albeit more persistent. In rodents, it can cause brain damage, seizures and neuronal cell death due to overactivation of glutamate receptors in the hippocampus. It is used in the laboratory to mimic epilepsy.

"We administered a small dose to avoid killing the animal. Even so, kainic acid caused seizures in the control group. It had no effect on the CR group," Amigo said.

Because previous research had shown that increasing mitochondrial calcium uptake can afford protection against excitotoxicity, he continued, "we decided to verify in vitro whether this was the case in our model. We isolated brain mitochondria from rats and again compared those fed ad libitum with those on a 40% CR diet. As we added calcium to the medium, we observed higher levels of mitochondrial calcium uptake in the CR group."

The next step was to see what happened when the mitochondria isolated from each group were treated with cyclosporin, a drug known to increase calcium retention. While calcium uptake did indeed increase in the mitochondria from the control group, it remained unchanged in the CR group, eliminating the difference observed in the previous test.

"Cyclosporin's target in mitochondria is well known," Amigo said. "The drug inhibits the action of a protein called cyclophilin D, leading to increased mitochondrial calcium retention."

In this case, however, cyclophilin D levels were found to be the same in both groups. The researchers therefore decided to measure the levels of other proteins that might be interfering with cyclophilin D's action in the organism.

"We discovered that caloric restriction induces an increase in levels of a protein called SIRT3, which is capable of modifying the structure of cyclophilin D. It removes an acetyl group from the molecule in a process known as deacetylation, and this inhibits cyclophilin D, so that the mitochondria retain more calcium and become insensitive to cyclosporin," Amigo said.

Just as other research groups had already found, the Redoxoma team also observed an increase in the activity of antioxidant enzymes such as glutathione peroxidase, glutathione reductase and superoxide dismutase in the CR rodents' mitochondria. According to the scientists, these results suggest an enhanced capacity to manage cerebral oxidative stress, a condition that contributes to the onset of several degenerative diseases.

Many studies on the effects of caloric restriction on metabolism and cell signaling have been conducted at IQ-USP. Preliminary data suggest the change in mitochondrial calcium transport induced by caloric restriction may also occur in other tissues besides the brain, with different repercussions.

For Amigo, the proteins with activity affected by nutritional intervention in this recent study are potential targets to be explored for treatment of diseases in which excitotoxicity causes loss of neurons.

Explore further: Scientists shed new light on the role of calcium in learning and memory

More information: Ignacio Amigo et al. Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity, Aging Cell (2016). DOI: 10.1111/acel.12527

Related Stories

Scientists shed new light on the role of calcium in learning and memory

August 26, 2016
While calcium's importance for our bones and teeth is well known, its role in neurons—in particular, its effects on processes such as learning and memory—has been less well defined.

Scientists identify key factor in mitochondrial calcium uptake and bioenergetics

May 12, 2016
Mitochondria are the energy-generating batteries of cells, but they also perform other critical functions, including protecting cells against calcium overload, a significant cause of cell death in certain cardiovascular and ...

Mitochondrial dynamics impair nervous system development in Wolfram syndrome

July 19, 2016
Although mitochondria, the tiny capsules that produce energy for the cell, are known to play some role in neurodevelopmental and psychiatric disorders, the contribution of mitochondrial dynamics (mitochondrial trafficking, ...

Researchers unveil architecture of mitochondrial calcium uniporter

May 5, 2016
Mitochondria are key integrators of cellular calcium (Ca2+) signaling and energy metabolism. Previous studies demonstrated that isolated mitochondria could buffer huge amounts of Ca2+ via a highly selective channel called ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.