Smart drug clears fat from liver and blood

October 10, 2016, Helmholtz Association of German Research Centres
Credit: Helmholtz Association of German Research Centres

Scientists of Helmholtz Zentrum München and Technische Universität München have developed a 'smart' drug that safely clears the liver of fat and prevents blood vessels from clogging up. Similar to a trojan horse, the drug enters the liver with a trick: It uses the pancreatic hormone glucagon as vehicle to shuttle thyroid hormone T3 the live while keeping it away from other organs, thereby improving cholesterol and lipid metabolism while avoiding typical side effects of thyroid hormone.

The constant rise in obesity and diabetes represents a major burden of our society. Fatty liver and atherosclerosis are frequent consequences of these metabolic diseases, but an efficient and safe medicine, which would reverse obesity, insulin resistance, fatty liver and atherosclerosis remains a major scientific challenge of global priority.

An international team led by metabolism experts Matthias Tschöp (Helmholtz Zentrum München / Technische Universität Müchen), Richard diMarchi (Indiana University) and Timo Müller (Helmholtz Zentrum München) report in the current issue of the journal Cell that liver-specific delivery of the thyroid hormone T3 using glucagon corrects obesity, glucose intolerance, and atherosclerosis without causing adverse effects in other tissues. "While the ability of T3 to lower cholesterol is known for centuries, deleterious effects, in particular on the skeleton and the cardiovascular system, do so far limit its medicinal utility," says Brian Finan, the first author of the manuscript.

Toward precision medicines of the future

"Part of our trick is, that we use the pancreatic hormone glucagon as a vehicle to deliver thyroid hormone only into cells carrying a glucagon receptor," says Christoffer Clemmensen, who led several of the key experiments. He explains: "Since there are lots of glucagon receptors in the liver, but almost none in heart or bone, our molecule concentrates thyroid hormone action to the liver while keeping it away from places where it would be harmful."

"The next task is to see whether this drug candidate will reach the same level of targeted tissue-selectivity in clinical studies," says diMarchi. "If the molecule shows equal efficacy and safety in humans, then this particular 'smart' drug design may indeed offer perspectives for metabolic precision medicine," summarizes Tschöp.

The team of Matthias Tschöp (Director of the Helmholtz Diabetes Center and Professor for Metabolic Diseases at the Technische Universität München) and Richard DiMarchi (Indiana University) already reported in 2015 the development and evaluation of a single hormone triple agonist, which effectively corrects obesity and insulin resistance. In another study (with a similar working mechanism as in this study) the scientists showed the targeted delivery of estrogen to only cells that express the receptor for GLP-1, thereby improving systems metabolism by concentration the action of estrogen to only the hypothalamus and the pancreas.

The newly developed glucagon/T3 molecule delivered the T3 selectively to the liver and thereby safely improved within a few days cholesterol metabolism in diet-induced obese mice. The molecule further decreased body weight, corrected non-alcoholic fatty liver disease, and improved glucose metabolism without deleterious effects of T3 in the heart and bone. Notably, the molecule failed to improve metabolism in mice lacking either the glucagon receptor or which lack the receptor in only the liver, demonstrating the liver-specific signal specificity of this new molecule.

Explore further: Rule of three: Hormone triplet offers hope for obesity and diabetes

More information: Brian Finan et al. Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease, Cell (2016). DOI: 10.1016/j.cell.2016.09.014

Related Stories

Rule of three: Hormone triplet offers hope for obesity and diabetes

December 8, 2014
A new substance that unifies the action profiles of three gastrointestinal hormones lowers the blood sugar level and reduces body fat considerably beyond existing drugs. With the discovery and validation of such novel molecules, ...

Doubling down against diabetes: Turbo-charged gut hormones

November 13, 2012
A collaboration between scientists in Munich, Germany and Bloomington, USA may have overcome one of the major challenges drug makers have struggled with for years: Delivering powerful nuclear hormones to specific tissues, ...

Multihormone reverses metabolic damage of high calorie diet

January 15, 2014
Importantly, the scientists found out that treatment of obese mice with this GLP-1/Glucagon co-agonist improves metabolism and body weight associated with restored function of the weight lowering hormone leptin, even in the ...

How fasting helps fight fatty liver disease

May 9, 2016
Scientists at Helmholtz Zentrum München have new information on what happens at the molecular level when we go hungry. Working with the Deutsches Zentrum für Diabetesforschung (German Center for Diabetes Research - DZD) ...

Gut hormone test predicts individual efficacy of gastric bypass

November 8, 2013
The sensitivity of the GLP-1 hormone, which is secreted by the gastrointestinal tract, can predict the metabolic efficacy of a gastric bypass. The use of a GLP1 challenge could thus function as a novel predictive biomarker ...

Research suggests diabetes drug acts differently from previous theories

May 5, 2016
A Mayo Clinic study suggests laboratory findings do not tell the whole story of how the diabetes drug metformin works to limit the level of glucose in the blood. The researchers found that metformin does not limit the action ...

Recommended for you

Machine learning can be used to predict which patients require emergency admission

November 20, 2018
Machine learning—a field of artificial intelligence that uses statistical techniques to enable computer systems to 'learn' from data—can be used to analyse electronic health records and predict the risk of emergency hospital ...

A Trojan horse delivery method for miRNA-enriched extracellular vesicles

November 20, 2018
A method for large-scale production of extracellular vesicles enriched with specific microRNAs (miRNAs) has been developed in the Wake Forest Institute for Regenerative Medicine (WFIRM) labs, offering a manufacturing standardization ...

Researchers stop 'sneaky' cancer cells in their tracks

November 20, 2018
A new study by University of Minnesota biomedical engineers shows how they stopped cancer cells from moving and spreading, even when the cells changed their movements. The discovery could have a major impact on millions of ...

Researchers hope to be able to replace dysfunctional brain cells

November 20, 2018
A new study by researchers at Karolinska Institutet supports the theory that replacement of dysfunctional immune cells in the brain has therapeutic potential for neurodegenerative diseases like ALS and Alzheimer's disease. ...

RNAi therapy mitigates preeclampsia symptoms

November 19, 2018
A collaboration of scientists from the University of Massachusetts Medical School, Beth Israel Deaconess Medical Center and Western Sydney University, have shown that an innovative new type of therapy using small interfering ...

Skeletal imitation reveals how bones grow atom-by-atom

November 19, 2018
Researchers from Chalmers University of Technology, Sweden, have discovered how our bones grow at an atomic level, showing how an unstructured mass orders itself into a perfectly arranged bone structure. The discovery offers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.