Role for autophagic cellular degradation process in maintaining genomic stability

November 29, 2016, Tokyo Medical and Dental University
The ubiquitin-proteasome system is thought to be the primary regulator of centrosome number. Here, Watanabe et al. show that selective autophagy also plays a role in regulating centrosome number via p62-dependent recruitment of centrosomal protein 63 to autophagosomes. Credit: Department of Pathological Cell Biology,Medical Research Institute

Centrosomes play an essential role in cell division by organizing the protein framework on which chromosomes assemble and then separate prior to division into daughter cells. Centrosomes are made up of a pair of centrioles, which are themselves composed of different proteins such as centrosomal protein 63 (Cep63) and polo-like kinase 4. These proteins are thought to regulate the number of centrioles, and thus centrosomes as well, using the ubiquitin-proteasome breakdown pathway that first adds a molecular tag to the protein to be degraded. However, researchers centered at Tokyo Medical and Dental University observed that mouse cells lacking a protein involved in autophagy (a lysosome-based degradation process involving hydrolytic enzymes) contained multiple centrosomes. Their work showed that autophagy is another method of regulating centrosome number.

The study was reported in Nature Communications.

Selective has been shown to break down specific cargos, including proteins and organelles, by delivering them to the lysozyme for digestion. The research team found that cells deficient in autophagy carry extra , which was confirmed by the use of autophagy inhibitors in normal cells.

Multiple dots of Cep63 were also visible in cells not undergoing autophagy. Silencing of Cep63 reduced the population of cells with multiple centrosomes while its up-regulation increased the centrosome number, thus confirming a role for Cep63 in centrosome number regulation. "Protein staining showed that the Cep63 dots co-localize and directly associate with the p62 , which plays a role as a cargo receptor in selective autophagy", first author Yuichiro Watanabe says. "This revealed that p62 is involved in the autophagic degradation of Cep63." In , most Cep63 dots undergo autophagy to regulate the centrosome number. However, in the absence of autophagy, the Cep63 dots persist and interact with p62 or lead to the generation of additional centrosomes.

"Mice lacking the expression of p62 and those in which autophagy was inhibited were also found to have more centrosomes than wild-type mice," corresponding author Shigeomi Shimizu says. "This suggests a key role for autophagy in preventing genomic instability."

The article "Autophagy controls centrosome number by degrading Cep63" was published in Nature Communications.

Explore further: Study suggests that autophagy inhibitors could improve efficacy of chemotherapies

More information: Yuichiro Watanabe et al, Autophagy controls centrosome number by degrading Cep63, Nature Communications (2016). DOI: 10.1038/ncomms13508

Related Stories

Study suggests that autophagy inhibitors could improve efficacy of chemotherapies

October 24, 2016
Chemotherapies treat cancer by killing tumor cells, but certain types of chemotherapy can also drive an immune system response to target and destroy the remaining tumor cells.

A key role for CEP63 in brain development and fertility discovered

July 7, 2015
Today in Nature Communications, scientists at the Institute for Research in Biomedicine (IRB Barcelona) provide molecular details about Seckel Syndrome, a rare disease that causes microcephaly, or small brain, and growth ...

Next steps toward preventing cancer and Alzheimer's

August 3, 2016
A new generation of drugs that prevent cancer and Alzheimer's could be developed, thanks to research from the University of Warwick.

Autophagy—a review of techniques

February 2, 2016
In this comprehensive review with over 2,450 authors, the topics covered reflect the range of specialist fields within autophagy, and the diversity of animal, plant and fungal cell types that must inevitably invoke autophagy. ...

Protein identified that can lengthen our life?

February 27, 2012
Cells use various methods to break down and recycle worn-out components—autophagy is one of them. In the dissertation she will be defending at Umea University in Sweden, Karin Håberg shows that the protein SNX18 ...

Recommended for you

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

Potential lines of attack against prostate cancer

April 17, 2018
Researchers from The University of East Anglia (UEA) have contributed to the world's largest study into genes that drive prostate cancer – identifying 80 molecular weaknesses that could be targeted by drugs to treat the ...

Epstein-Barr virus linked to seven serious diseases

April 16, 2018
A far-reaching study conducted by scientists at Cincinnati Children's reports that the Epstein-Barr virus (EBV)—best known for causing mononucleosis—also increases the risks for some people of developing seven other major ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.