Speed data for the brain's navigation system

December 6, 2016, DZNE
DZNE researchers have identified a neural pathway that feeds speed information directly into the brain’s navigation system. Credit: DZNE/Daniel Justus; OpenStreetMap

In order to guide us accurately through space, the brain needs a "sense" of the speed of our movement. But how do such stimuli actually reach the brain? Researchers at the German Center for Neurodegenerative Diseases (DZNE) have now identified a signal pathway in mice that feeds speed information directly into the brain's navigation system. Scientists led by Stefan Remy report on this in the journal Nature Neuroscience. Similar neural pathways exist in humans. They are known to be damaged by Alzheimer's disease – a possible explanation why spatial orientation is frequently impaired in this form of dementia.

In this study, the researchers stimulated specific areas in the brains of mice and recorded the evoked activity. "In previous studies, we found specific cells in the medial septum that fire at higher rates when the mouse moves faster. They function as 'speedometer cells'. Possibly, they receive their input from deeper brain areas that are involved in motion control", explains Professor Remy.

Neuronal data bus

These neurons are connected to other brain regions via long-range projections. This includes an area called the "entorhinal cortex" which is considered to be the brain's navigation center. "The computations needed to navigate in space are ultimately made in this area of the brain," says Remy. "We have now been able to show that the rate at which the speedometer cells fire influences neuronal activity in the entorhinal cortex. When the firing rate increases, activity in the entorhinal cortex increases too. The speedometer cells act like a data bus, an interface that relays speed information directly to the brain's navigation center."

Cause of spatial orientation disorders?

Humans have similar neural pathways connecting the medial septum and . Their function has not yet been investigated in detail; however, in the brains of Alzheimer's patients these connections are known to degenerate early in the progress of the disease. "The symptoms of Alzheimer's disease include spatial memory impairments. In such cases, it might happen that an affected person cannot find the way home," says Remy. "Our results now provide a possible explanation for these symptoms: Information about the ongoing speed of movement is withheld and does not reach the brain's navigation center."

Explore further: Researchers find speedometer in the brain

More information: Daniel Justus et al, Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections, Nature Neuroscience (2016). DOI: 10.1038/nn.4447

Related Stories

Researchers find speedometer in the brain

June 3, 2015
Researchers in Bonn have identified neural circuits in the brains of mice that are pivotal for movement and navigation in space. These nerve cells that are presumed to exist in a similar form in humans, give the start signal ...

New insights into causes of loss of orientation in dementia

January 12, 2016
New research has revealed how disease-associated changes in two interlinked networks within the brain may play a key role in the development of the symptoms of dementia.

A brake in the head: Researchers gain new insights into the working of the brain

September 19, 2013
Scientists of the Charité-Universitätsmedizin Berlin and the German Center for Neurodegenerative Diseases have managed to acquire new insights into the functioning of a region in the brain that normally is involved in spatial ...

A new experimental system sheds light on how memory loss may occur

June 30, 2016
Two interconnected brain areas - the hippocampus and the entorhinal cortex - help us to know where we are and to remember it later. By studying these brain areas, researchers at Baylor College of Medicine, Rice University, ...

Understanding how our brain perceives space

May 28, 2012
European scientists looked into the cellular properties of neurons responsible for space coordination. Insight into the neuronal network of the entorhinal cortex will help understand what determines space and movement perception, ...

'Inner GPS' study may aid diagnosis of brain diseases

November 2, 2015
A new Dartmouth study sheds light on brain cells in our "inner GPS," which may improve understanding of memory loss and wandering behavior in people with Alzheimer's and other neurodegenerative diseases.

Recommended for you

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Newborn babies who suffered stroke regain language function in opposite side of brain

February 17, 2018
It's not rare that a baby experiences a stroke around the time it is born. Birth is hard on the brain, as is the change in blood circulation from the mother to the neonate. At least 1 in 4,000 babies are affected shortly ...

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

Humans blink strategically in response to environmental demands

February 16, 2018
If a brief event in our surroundings is about to happen, it is probably better not to blink during that moment. A team of researchers at the Centre for Cognitive Science from Technische Universität Darmstadt published a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.