Newly-revealed amino acid function could be used to boost antioxidant levels

December 14, 2016
Newly-revealed amino acid function could be used to boost antioxidant levels (fig 2). Credit: Kobe University

A Japanese research team has become the first in the world to discover that 2-aminobutyric acid (2-AB) is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested. The findings were published in the online version of Scientific Reports on November 9.

Glutathione, an antioxidant with antidotal properties, plays an important role in keeping us healthy. This finding could contribute to the development of new ways to prevent, diagnose and treat various oxidative stress-related conditions including Alzheimer's, aging, cancer, lifestyle-related diseases, hardened arteries, and organ damage caused by medicines and toxins.

The team was led by Kobe University Graduate School of Medicine, Division of Evidence-Based Laboratory Medicine Assistant Professor IRINO Yasuhiro and Associate Professor TOH Ryuji, in collaboration with Professor HIRATA Ken-ichi (Kobe University, Division of Cardiovascular Medicine) and Professor MIYATA Okiko (Kobe Pharmaceutical University, Medicinal Chemistry Laboratory)

Glutathione is a major antioxidant component within cells, and keeps our bodies healthy by contributing to the detoxification of foreign substances. Monitoring metabolism in the body can help with early diagnosis of illness, as glutathione is consumed when bodies experience oxidative stress. However, glutathione concentration in the blood is 100- to 1000-fold lower than levels within cells, making it hard to accurately measure. Our bodies also compensate for the depletion of glutathione under stress, so circulating levels will not necessarily decrease during illness. This makes it difficult to accurately monitor the metabolism of glutathione just by measuring its levels in the blood.

Newly-revealed amino acid function could be used to boost antioxidant levels (fig 1). Credit: Kobe University

Increasing levels of glutathione in the body could help to prevent and treat a variety of conditions which involve oxidative stress and organ damage caused by toxins. However, simply ingesting glutathione does not efficiently increase glutathione levels in the body.

2-aminobutyric acid (2-AB) has been reported as a basic component of ophthalmic acid, which is produced when glutathione is synthesized. Until now, the metabolism and physiological effects of 2-AB itself were unknown. The group investigated whether 2-AB could be a marker for glutathione dynamics, and whether it could be used to modulate glutathione homeostasis.

Searching for leads to develop new diagnoses and treatment to combat heart failure, the group started by comprehensively analyzing metabolites in the bloodstreams of atrial septal defect patients using a gas chromatography mass spectrometer. Results showed that levels of 2-AB were higher in these patients than in healthy subjects, and 2-AB levels decreased after the closure of atrial septal defect. Then, the group clarified for the first time that 2-AB is a byproduct of cysteine, one of the constituent amino acids of glutathione (figure 1), and revealed that activation of glutathione synthetic pathway under oxidative damage led to 2-AB accumulation. Because blood concentration of 2-AB reflects the metabolism of glutathione within the body, 2-AB could potentially be used as a new biomarker for early detection of oxidative stress.

Intriguingly, the group also found that 2-AB promotes glutathione synthesis. The anticancer drug doxorubicin causes heart damage via as an adverse effect. They discovered that when taken orally, 2-AB increases the concentration of glutathione in the bloodstream and the heart, lessening the heart damage caused by doxorubicin (figure 2).

This research found that as well as being a biomarker, 2-AB itself is an antioxidant that can be used to effectively increase glutathione in the body (patent pending). 2-AB is a naturally-occurring amino acid that can be found in everyday food products. Future research will examine which foods contain high levels of 2-AB, the recommended level to ingest, whether it can be used as an antioxidant for other organs, and the development of medicines and functional food for clinical use.

Explore further: Research shows oral supplement increases body's storage of antioxidant

More information: Yasuhiro Irino et al. 2-Aminobutyric acid modulates glutathione homeostasis in the myocardium, Scientific Reports (2016). DOI: 10.1038/srep36749

Related Stories

Research shows oral supplement increases body's storage of antioxidant

April 23, 2013
(Medical Xpress)—Oral supplementation of glutathione is effective in increasing the body's stores of the antioxidant, said Penn State College of Medicine researchers in study results presented at a conference today (April ...

Boosting levels of known antioxidant may help resist age-related decline

October 24, 2016
Researchers at Oregon State University have found that a specific detoxification compound, glutathione, helps resist the toxic stresses of everyday life - but its levels decline with age and this sets the stage for a wide ...

Concerns over glutathione skin bleaching in the UK

August 31, 2016
Skin bleaching with the use of glutathione is on the rise, despite the potential ethical issues and adverse side effects associated with the practice, warns a doctor in The BMJ this week.

Study reveals a key role your gut bacteria play in body's self-defense

October 19, 2015
Chalk up another reason why your gut bacteria are so critical to your health—and why these microorganisms could be the key to preventing a host of diseases. Scientists in Sweden have discovered that human intestinal flora ...

Recommended for you

Lactation hormone also helps a mother's brain

September 26, 2017
The same hormone that stimulates milk production for lactation, also acts in the brain to help establish the nurturing link between mother and baby, University of Otago researchers have revealed for the first time.

Image ordering often based on factors other than patient need: study

September 25, 2017
Do you really need that MRI?

Bone marrow concentrate improves joint transplants

September 25, 2017
Biologic joint restoration using donor tissue instead of traditional metal and plastic may be an option for active patients with joint defects. Although recovery from a biologic joint repair is typically longer than traditional ...

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.