Study reveals a key role your gut bacteria play in body's self-defense

October 19, 2015 by David Callahan, KTH Royal Institute of Technology
A diagram illustrates the relationship between the mouse's gut bacteria and the regulation of glutathione in the liver and colon. Credit: KTH Royal Institute of Technology

Chalk up another reason why your gut bacteria are so critical to your health—and why these microorganisms could be the key to preventing a host of diseases. Scientists in Sweden have discovered that human intestinal flora regulate the levels of the body's main antioxidant, glutathione, which fights a host of diseases.

The study could lead to new probiotic-delivering foods, and a better understanding of the behind diseases such as type 2 diabetes, says co-author Adil Mardinoglu, a researcher at Stockholm's KTH Royal Institute of Technology.

Published in the scientific journal, Molecular Systems Biology, the findings help complete our understanding of how nonessential are synthesized to equip the body's cells with detoxifying agents and antioxidants, Mardinoglu says.

"Gut microbiota regulate your glutathione and amino acid metabolism—not only in the small intestine but also in the liver and the colon," he says. 

The is host to more than 1,000 known different species of bacteria. Some of these microbiota were found to be consume glycine, which is one of the three amino acids required for the synthesis of the body's glutathione. In a test with bacteria-free mice, the researchers measured the level of the amino acids in the portal vein, the main vessel that drains blood from the gastrointestinal tract and spleen to the liver. They found a lower level of glycine in the liver and colon tissues, which indicated that the gut bacteria regulates glutathione metabolism in those organs, too.

Mardinoglu points out that since decreased levels of glycine and other amino acids have been linked to type 2 diabetes, non-alcoholic and other metabolism-related disorders, further study of microbial amino acids in the human gastrointestinal tract could shed light on the development of these diseases.

A generic map of mouse metabolism was created and tissue-specific computer models for major mouse tissues were generated. Through integration of high throughput experimental data, the researcher found that the microbiota in the small intestine consumes glycine which is one of the three amino acids required for the synthesis of the glutathione. The results were confirmed in live lab tests. Credit: KTH Royal Institute of Technology

The link between and glutathione metabolism could lead to the development of food products that can deliver beneficial bacteria, or probiotics, to the gut," Mardinoglu says. "These results can be used to understand how bacteria play a role in the metabolic processes involved in the development of obesity, type 2 diabetes, non-alcoholic fatty liver disease as well as malnutrition."

Explore further: New discoveries linking gut bacteria with cholesterol metabolism give hope for the future

More information: Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen J (2015), The gut microbiota modulates host amino acid and glutathione metabolism in mice, Molecular Systems Biology, 11: 834. msb.embopress.org/content/11/10/834

Related Stories

New discoveries linking gut bacteria with cholesterol metabolism give hope for the future

February 18, 2013
(Medical Xpress)—Researchers at the Sahlgrenska Academy, University of Gothenburg, Sweden, show that cholesterol metabolism is regulated by bacteria in the small intestine. These findings may be important for the development ...

Gut microbiota regulates bile acid metabolism

April 19, 2012
A new study presented today at the International Liver Congress 2012 demonstrates that the gut microbiota has a profound systemic effect on bile acid metabolism.

Gut microbiota transplantation may prevent development of diabetes and fatty liver disease

April 19, 2012
Exciting new data presented today at the International Liver Congress 2012 shows the gut microbiota's causal role in the development of diabetes and non-alcoholic fatty liver disease (NAFLD), independent of obesity.(1) Though ...

Gut microbiota may play a role in the development of alcoholic liver disease

April 12, 2014
Exciting new data presented today at the International Liver Congress 2014 shows that the gut microbiota has a potential role in the development of alcoholic liver disease (ALD).1 Though an early stage animal model, the French ...

Bacteria that prevent type 1 diabetes

August 6, 2015
Our bodies have ten times more microbes than human cells. This set of bacteria is called microbiota. In some instances, bacteria known as pathogens can cause infectious diseases. However, these micro-organisms can also protect ...

Intestinal bacteria influence food transit through the gut

November 21, 2013
Food transit through the small intestine affects the body's absorption of nutrients and, consequently, our health. The discovery that food transit time is regulated by a hormone indicates new ways to increase the intestinal ...

Recommended for you

Lab-on-a-chip delivers critical immunity data for vulnerable populations

April 25, 2018
For millions of displaced people around the world—many of them refugees, living in temporary shelters under crowded conditions—an outbreak of disease is devastating. Each year, the measles virus kills more than 134,000 ...

Want new medicines? You need fundamental research

April 25, 2018
Would we be wise to prioritize "shovel-ready" science over curiosity-driven, fundamental research programs? Would that set the stage for the discovery of more new medicines over the long term?

Implantable islet cells come with their own oxygen supply

April 25, 2018
Since the 1960s, researchers have been interested in the possibility of treating type 1 diabetes by transplanting islet cells—the pancreatic cells that are responsible for producing insulin when blood glucose concentration ...

'Incompatible' donor stem cells cure adult sickle cell patients

April 25, 2018
Doctors at the University of Illinois Hospital have cured seven adult patients of sickle cell disease, an inherited blood disorder primarily affecting the black community, using stem cells from donors previously thought to ...

Research explains link between exercise and appetite loss

April 24, 2018
Ever wonder why intense exercise temporarily curbs your appetite? In research described in today's issue of PLOS Biology, Albert Einstein College of Medicine researchers reveal that the answer is all in your head—more specifically, ...

Mammary stem cells challenge costly bovine disease

April 24, 2018
Mastitis is the most expensive disease in the dairy industry. Each clinical case can cost a dairy farmer more than $400 and damages both the cow's future output as well as her comfort.

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Squirrel
5 / 5 (1) Oct 19, 2015
If you want to read the paper, the above link goes to open access text and pdf.
JVK
1 / 5 (2) Oct 19, 2015
Except: "Gut microbiota regulate your glutathione and amino acid metabolism—not only in the small intestine but also in the liver and the colon," he says.

This open access journal article links the nutrient-dependent pheromone-controlled physiology of reproduction in mice to humans via metabolic networks linked to genetic networks in the context of "fish odor syndrome." http://www.ncbi.n...24693353

Excerpt: "The result of this synergy is (1) a liver enzyme that oxidizes trimethylamine to (2) an odor that causes (3) species-specific behaviors. Thus, the complex systems that biology required to get from nutrient acquisition and nutrient metabolism to species-specific odor-controlled behavior is exemplified by adaptive evolution of an attractive odor to mice that repels rats (see for review Li et al., 2013)."

The moth model links microbes to humans via the same molecular mechanisms.
http://phys.org/n...xta.html
Vietvet
3 / 5 (2) Oct 19, 2015
Nutrient-dependent/pheromone-controlled adaptive evolution: a model.
Kohl JV1.
http://www.ncbi.n...24693353

JVK's model destroyed.
http://www.ncbi.n...4049134/
Captain Stumpy
3 / 5 (2) Oct 19, 2015
apophenia from jvk
This open access journal article links the nutrient-dependent pheromone-controlled physiology of reproduction
By all means, please specifically demonstrate and show in the linked open access journal link you provided LINKS reproduction with "Gut microbiota regulate your glutathione and amino acid metabolism—not only in the small intestine but also in the liver and the colon"

you claim the journal article LINKS reproduction with the Gut microbiota, so PLEASE SHOW THIS IN THE ARTICLE
http://www.ncbi.n...24693353
a far better link would be here
http://www.socioa...ew/24367

or read about your failure here
http://freethough...s-place/

PS the quote you gave is NOT found in the first link (the actual SCIENCE), it is found in your model (the PSEUDOSCIENCE)

reported for pseudoscience
JVK
1 / 5 (2) Oct 19, 2015
See also: http://stanmed.st...our.html

Obviously, the moth model links microbes to humans via the same molecular mechanisms that enable protection from virus-driven genomic entropy by nutrient-dependent RNA-mediated amino acid substitutions and the supercoiling of DNA.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.