Why a standard treatment for the aggressive blood-cell cancer AML so often fails

December 20, 2016
Why a standard treatment for the aggressive blood-cell cancer AML so often fails
Malignant precursor cells (AML blasts) in the bone marrow of a patient with acute myeloid leukemia. The intense brown staining reveals the high level of activity of the enzyme SAMHD1 in cells that have not responded to treatment with cytarabine. Credit: Institute of Pathology, Göttingen University Medical School

An international team of researchers has shown why a standard treatment for the aggressive blood-cell cancer AML so often fails. The study uncovers a new biomarker that predicts the efficacy of the chemotherapy and identifies a new drug target.

Acute myeloid leukemia (AML) is a cancer that is characterized by the uncontrolled proliferation of certain types of . The disease results from a wide range of mutations and prognosis varies correspondingly between different patient groups. The standard therapy for all groups includes treatment with cytosine arabinoside (cytarabine), which is a so-called nucleoside analog. Most patients initially respond to chemotherapy, but many patients fail in the long run or even become resistant to the agent. Resistance results in relapse and the resumption of disease progression. Now a study led by Oliver T. Keppler, who holds the Chair of Virology at LMU's Max von Pettenkofer Institute, and Jindrich Cinatl Jr., a professor at the Institute for Medical Virology at Frankfurt University (of which Keppler was the Director before he moved to LMU in 2015) has identified the mechanism behind resistance to cytarabine.

Cytarabine is rapidly taken up by cells and is chemically modified by the addition of a so-called triphosphate moiety, a small chemical group. In fact, the modified form of the drug is the therapeutically active substance. Upon incorporation into the genome of the replicating cancer cell, it inhibits further DNA synthesis during cell division. Malignant cells in general divide very rapidly and are thusare more susceptible to its detrimental effects than most other cell types in the body. The new study, which appears in the leading journal Nature Medicine, identifies the enzyme SAMHD1 as an inhibitor of the action of cytarabine, and demonstrates that it acts by removing the triphosphate from the active drug.

Context-dependent roles

Oliver Keppler's research actually focuses on mechanisms that lead to the development of AIDS following infection with Human Immunodeficiency Virus 1 (HIV-1). So he was already familiar with SAMHD1 in the context of antiretroviral therapy, which also involves nucleoside analogs. In order to replicate successfully in human cells, HIV-1 must first convert its RNA genome into DNA via a process called reverse transcription. Like DNA replication, reverse transcription of RNA can be disrupted by the incorporation of a nucleoside analog into the growing HIV-1 DNA strand. Without intact copies of viral DNA, no new virus particles can be produced. In this case, SAMHD1 is thought to promote the inhibition of virus replication by degrading the normal DNA building blocks that the virus needs.

The LMU researchers and collaborators in Frankfurt first assumed that a similar mechanism might be at work in AML cells treated with cytarabine, and that SAMHD1 would enhance the effect of the analog. But as it turned out, exactly the opposite happens. "To our surprise, we found that the activated form of cytarabine is itself a substrate for SAMHD1," says Keppler: The enzyme deactivates the drug, thus inhibiting its ability to inhibit DNA synthesis. "Moreover, there are indications that the enzyme may also interact in the same way with triphosphates of other nucleoside analogs used in tumor therapy. In collaboration with a large group of clinicians, pathologists, pharmacologists, biochemists and biostatisticians, Keppler and his team went on to show – based both on mouse models of AML and retrospective investigations of AML patients – that SAMHD1 is indeed a crucial factor in the failure of cytarabine therapy for this type of leukemia. As the authors state in the new paper, SAMHD1 provides a cellular biomarker with which to assess the potential efficacy of therapies based on nucleoside analogs and plays a significant role in the progression of AML in individual patients. Further studies may point to ways of inhibiting the activity of SAMHD1 itself, which would be expected to boost the effectiveness of an important class of anti-tumor drugs.

Explore further: How immune cells defend themselves against HIV

More information: Constanze Schneider et al. SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia, Nature Medicine (2016). DOI: 10.1038/nm.4255

Related Stories

How immune cells defend themselves against HIV

October 2, 2012
A team of scientists led by virologists Prof. Oliver T. Fackler and Prof. Oliver T. Keppler from Heidelberg University Hospital have decoded a mechanism used by the human immune system to protect itself from HIV viruses. ...

CPX-351 improves survival following allogeneic hematopoietic cell transplant in acute myeloid leukemia patients

December 5, 2016
Acute myeloid leukemia, or AML, is a type of cancer of the blood and bone marrow. It occurs most often in older populations and progresses rapidly, interfering with the production of red blood cells, white blood cells and ...

HIV study identifies key cellular defence mechanism

November 7, 2011
(Medical Xpress) -- Scientists have moved a step closer to understanding how one of our body’s own proteins helps stop the human immunodeficiency virus (HIV-1) in its tracks.

Discovery may help prevent HIV 'reservoirs' from forming

April 17, 2013
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how the protein that blocks HIV-1 from multiplying in white blood cells is regulated. HIV-1 is the virus that causes AIDS, and the discovery ...

Researchers figure out staying power of HIV-fighting enzyme

May 1, 2014
Johns Hopkins biochemists have figured out what is needed to activate and sustain the virus-fighting activity of an enzyme found in CD4+ T cells, the human immune cells infected by HIV. The discovery could launch a more effective ...

Researchers identify HIV-inhibiting mechanism

June 29, 2011
Researchers at Case Western Reserve University School of Medicine have discovered a long-sought cellular factor that works to inhibit HIV infection of myeloid cells, a subset of white blood cells that display antigens and ...

Recommended for you

Tracking how multiple myeloma evolves by sequencing DNA in the blood

December 10, 2017
Although people with multiple myeloma usually respond well to treatment, the blood cancer generally keeps coming back. Following genetic changes in how the disease evolves over time will help to understand the disease and, ...

Landmark CAR-T cancer study published

December 10, 2017
Loyola University Medical Center is the only Chicago center that participated in the pivotal clinical trial of a groundbreaking cancer treatment that genetically engineers a patient's immune system to attack cancer cells.

Study finds emojis promising tool for tracking cancer patients' quality of life

December 10, 2017
In findings presented to the American Society of Hematology, Mayo Clinic researchers found that using emojis instead of traditional emotional scales were helpful in assessing patients' physical, emotional and overall quality ...

Study explores use of checkpoint inhibitors after relapse from donor stem cell transplant

December 10, 2017
Immunotherapy agents known as checkpoint inhibitors have shown considerable promise in patients with hematologic cancers who relapse after a transplant with donor stem cells. Preliminary results from the first clinical trial ...

Blood test may help predict which breast cancers will recur

December 8, 2017
A blood test five years after breast cancer treatment helped identify some women who were more likely to relapse, long before a lump or other signs appeared, a preliminary study found.

Alcohol-abuse drug Antabuse kills cancer cells

December 8, 2017
A new study in Nature by an international team including researchers from Karolinska Institutet, reports that the alcohol-abuse drug Antabuse is effective against cancer. The study also identifies a potential mechanism of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.