Virtual reality in medicine—new opportunities for diagnostics and surgical planning

December 7, 2016
With SpectoVive, doctors can interact in a three-dimensional space with a part of the body that requires surgery. Credit: University of Basel

Before an operation, surgeons have to obtain the most precise image possible of the anatomical structures of the part of the body undergoing surgery. University of Basel researchers have now developed a technology that uses computed tomography data to generate a three-dimensional image in real time for use in a virtual environment.

The planning of a surgical procedure is an essential part of successful treatment. To determine how best to carry out procedures and where to make an incision, surgeons need to obtain as realistic an image as possible of anatomical structures such as bones, blood vessels, and tissues.

Researchers from the University and University Hospital of Basel's Department of Biomedical Engineering have now succeeded in taking two-dimensional cross-sections from computer tomography and converting them for use in a virtual environment without a time lag. Using sophisticated programming and the latest graphics cards, the team led by Professor Philippe C. Cattin succeeded in speeding up the volume rendering to reach the necessary frame rate. In addition, the SpectoVive system can perform fluid shadow rendering, which is important for creating a realistic impression of depth.

For example, doctors can use the latest generation of glasses to interact in a three-dimensional space with a hip bone that requires surgery, zooming in on the bone, viewing it from any desired angle, adjusting the lighting angle, and switching between the 3-D view and regular CT images. Professor Cattin explains the overall benefits: "Virtual reality offers the doctor a very intuitive way to obtain a visual overview and understand what is possible."

"This brand-new technology smoothly blurs the boundary between the physical world and computer simulation. As a doctor, I am no longer restricted to looking at my patient's images from a bird's eye view. Instead, I become part of the image and can move around in digital worlds to prepare myself, as a surgeon, for an operation in detail never seen before," says ophthalmologist Dr. Peter Maloca.

"I have found that these new environments continue to guide me and have helped rewire my senses, ultimately making me a better doctor. Those who stand to gain the most here are doctors, their patients, and students – all of whom can share in this new information," adds Maloca, who works at University Hospital Basel's OCTlab and at Moorfields Eye Hospital in London.

Improved volume rendering

The ability to convert CT images into a 3-D on-screen representation is nothing new. Until now, however, commonly available hardware could not generate these three-dimensional volumes in for use in virtual spaces. One particularly challenging aspect was that smooth playback in a requires at least 180 images a second – 90 images each for the left and right eyes; otherwise, the viewer may experience nausea or dizziness.

Widespread interest in innovation

This achievement was aided by developments in the computer games industry and new generations of powerful standard hardware, providing medical practitioners with access to three-dimensional test environments. At present, the Basel-based researchers are conducting regular demonstrations of SpectoVive to physicians in order to highlight the system's potential and, at the same time, to gain a better understanding of doctors' requirements.

Some museums have also expressed interest in the technology, seeing SpectoVive as an opportunity to allow visitors to discover the world inside exhibits, such as mummies, in an intuitive and nondestructive manner. However, Philippe Cattin, Professor for Image-Guided Therapy at the Faculty of Medicine, sees the greatest potential in the areas of diagnostics, surgical planning, and medical training.

SpectoVive – part of the MIRACLE project

This innovation is part of the MIRACLE project underway at the Department of Biomedical Engineering. The project is receiving CHF 15.2 million in funding from the Werner Siemens-Foundation. Its aim is to allow the minimally invasive treatment of bones using laser beams. One day, it is expected that SpectoVive technology will be used in the planning of surgical procedures and for the navigation of the robot-guided laser system.

Explore further: Microscope imaging system integrates virtual reality technology

Related Stories

Microscope imaging system integrates virtual reality technology

August 3, 2016
Joshua Bederson, MD, Professor and System Chair for the Department of Neurosurgery at Mount Sinai Health System, is the first neurosurgeon to use CaptiView - a microscope image injection system from Leica Microsystems that ...

Engineer developing haptic feedback system for med students 

September 6, 2016
This could be the best and most realistic version of "Operation" ever, but a system under development at Rice University to help train doctors is no game.

3D images generated from PET/CT scans help surgeons envision tumors

October 17, 2013
Researchers at Jefferson Medical College in Philadelphia have developed a hologram-like display of a patient's organs that surgeons can use to plan surgery. This approach uses molecular PET/CT images of a patient to rapidly ...

Recommended for you

World's first child hand transplant a 'success'

July 19, 2017
The first child in the world to undergo a double hand transplant is now able to write, feed and dress himself, doctors said Tuesday, declaring the ground-breaking operation a success after 18 months.

Knee surgery—have we been doing it wrong?

July 18, 2017
A team of University at Buffalo medical doctors have published a study that challenges a surgical practice used for decades during arthroscopic knee surgery.

New tools help surgeons find liver tumors, not nick blood vessels

July 17, 2017
The liver is a particularly squishy, slippery organ, prone to shifting both deadly tumors and life-preserving blood vessels by inches between the time they're discovered on a CT scan and when the patient is lying on an operating ...

Researchers discover indicator of lung transplant rejection

July 13, 2017
Research by scientists at Dignity Health St. Joseph's Hospital and Medical Center's Norton Thoracic Institute was published in the July 12, 2017 issue of Science Translational Medicine titled "Zbtb7a induction in alveolar ...

New device could make closing surgical incisions a cinch

July 7, 2017
Like many surgeons, Dr. Jason Spector is often faced with the challenge of securely closing the abdominal wall without injuring the intestines. If the process goes awry, there can be serious consequences for patients, including ...

Success with first 20 patients undergoing minimally invasive pancreatic transplant surgery

June 29, 2017
Surgeons at Johns Hopkins Medicine report that their first series of a minimally invasive procedure to treat chronic pancreas disease, known as severe pancreatitis, resulted in shorter hospital stays, less need for opioids ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.