Researchers use light to launch drugs from red blood cells

January 4, 2017, University of North Carolina at Chapel Hill
blood cells
Scanning electron micrograph of blood cells. From left to right: human erythrocyte, thrombocyte (platelet), leukocyte. Credit: public domain

Scientists at the University of North Carolina at Chapel Hill have developed a breakthrough technique that uses light to activate a drug stored in circulating red blood cells so that it is released exactly when and where it is needed.

The work, led by Fred Eshelman Distinguished Professor David Lawrence in the Eshelman School of Pharmacy, has profound implications for the field of drug delivery by using to carry drugs and then using light to release them in precise locations. The technique, which overcomes a decades-long scientific hurdle, could drastically reduce the amount of a drug needed to treat disease and thus side effects.

"Using light to treat a disease site has a lot of benefits beyond the isn't-that-cool factor," said Lawrence, whose work is published in the journal Angewandte Chemie. "Those benefits could include avoiding surgery and the risk of infection, making anesthesia unnecessary and allowing people to treat themselves by shining a light on a problem area, such as an arthritic knee."

Lawrence and his team attached a drug molecule to vitamin B12 and loaded the compound into red , which can circulate for up to four months, providing a long-lasting reservoir of medicine that can be tapped as needed. They then demonstrated their ability to overcome a longtime technical hurdle: using long-wavelength light to penetrate deep enough into the body to break molecular bonds; in this case, the drug linked to vitamin B12.

Here's the rub: Long-wavelength light can penetrate much more deeply into the body, but it doesn't carry as much energy as short wavelength light, and cannot typically break molecular bonds. To activate the drug with long-wavelength light, Lawrence and his team had to figure out how to do it in a way that required less energy.

"That's the trick, and that's where we've been successful," said Lawrence.

Lawrence's team solved the energy problem by introducing a weak energy bond between vitamin B12 and the drug and then attached a fluorescent molecule to the bond. The fluorescent molecule acts as an antenna, capturing long wavelength light and using it to cut the bond between the and the vitamin carrier.

Lawrence pointed to some complex and deadly cancers where physicians might have a better chance of helping the patient if a wide array of anti-cancer agents could be used.

"The problem is when you start using four or five very toxic drugs you're going to have intolerable side effects," he said. "However, by focusing powerful drugs at a specific site, it may be possible to significantly reduce or eliminate the side effects that commonly accompany cancer chemotherapy."

Lawrence has also created a company in partnership with UNC, Iris BioMed, to further develop the technology to be used in humans. Lawrence is a member of the UNC Lineberger Comprehensive Cancer Center and professor in the College of Arts and Sciences and School of Medicine.

Explore further: Researchers kill drug-resistant lung cancer with 50 times less chemo

Related Stories

Researchers kill drug-resistant lung cancer with 50 times less chemo

January 14, 2016
The cancer drug paclitaxel just got more effective. For the first time, researchers from the University of North Carolina at Chapel Hill have packaged it in containers derived from a patient's own immune system, protecting ...

Scientists develop new nanoscale method to fight cancer

February 28, 2014
Researchers from UCLA's Jonsson Comprehensive Cancer Center have developed an innovative cancer-fighting technique in which custom-designed nanoparticles carry chemotherapy drugs directly to tumor cells and release their ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.