The strange double life of Dab2: Cancer protein also plays role in fat storage

January 9, 2017
Dab2 (red)-positive pre-adipocytes accumulating lipid droplets (green). Credit: Sylvester Comprehensive Cancer Center

Sometimes proteins do a lot more than we expect. Dab2, for example, has long been linked to cancer. The molecule is associated with a chain of signaling proteins called the Ras-MAPK pathway. In many cancers, elements of Ras-MAPK mutate and start telling cells to grow uncontrollably.

Sylvester Comprehensive Cancer Center researcher Xiang-Xi Michael Xu, Ph.D., who is also a professor of cell biology at the University of Miami Miller School of Medicine, discovered Dab2 more than 20 years ago and has been studying its relationship to cancer ever since. But now he's found that Dab2 has been living a secret life all along - one that could have implications for fighting obesity. In a paper published in the journal Scientific Reports, the Xu lab has shown that young mice without Dab2 don't gain weight when given excessive food.

"These mice look and act normal," says Xu. "Everything seems fine, except when we give them a high-fat diet. They just don't get fat."

The underlying mechanism may revolve around fat stem cells: that can either divide into more stem cells or differentiate into mature fat cells. In , Dab2 suppresses Ras-MAPK, which in turn elevates a protein called PPAR, which helps fat stem cells make the jump to mature fat cells. Eliminating Dab2 short-circuits that process.

While normal mice eating a calorie-dense diet pack on weight, the Dab2 knockouts stay lean - but only for a while. As the mice mature, the metabolic effect dissipates. By six months, the loss of Dab2 has virtually no effect. Xu believes this happens because mice (and humans) lose their fat as they reach maturity. This early impact could help explain why early weight problems could persist into adulthood and many adults have such a hard time losing weight.

"Dab2 controls a population of that slowly disappears," said Xu. "It seems that children are especially affected by diet. They can both increase fat cell number and fat cell size when they are young. Later in life, they can still make fat, but that's existing getting bigger. Habits of childhood could be affecting adults, making them more susceptible to obesity."

From a public health standpoint, these findings may reinforce the importance of steering children away from high-fat diets. Identifying this role for Dab2 could also lead to new pharmaceutical strategies to combat childhood obesity, as the protein could make an attractive target for drug development.

"It would be very hard for a small laboratory like ours to develop a new drug that targets Dab2," said Xu. "But perhaps a pharmaceutical company will pick it up and develop it."

Explore further: Hormone that controls maturation of fat cells discovered

Related Stories

Hormone that controls maturation of fat cells discovered

October 25, 2016
Scientists at the Stanford University School of Medicine have discovered a hormone that controls the first step in the maturation of fat cells. Its actions help explain how high-fat diets, stress and certain steroid medications ...

Study explores how high-fat diet influences colon cancer

March 2, 2016
A study published today in Nature reveals how a high-fat diet makes the cells of the intestinal lining more likely to become cancerous. It joins a growing body of research that finds obesity and eating a high-fat, high-calorie ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.