Device will rapidly, accurately and inexpensively detect the Zika virus at airports

February 22, 2017
Waseem Asghar, Ph.D., is lead investigator and assistant professor at the Department of Computer and Electrical Engineering and Computer Science in FAU's College of Engineering and Computer Science and in the Department of Biological Sciences in FAU's Charles E. Schmidt College of Science. Credit: Florida Atlantic University

About the size of a tablet, a portable device that could be used in a host of environments like a busy airport or even a remote location in South America, may hold the key to detecting the dreaded Zika virus accurately, rapidly and inexpensively using just a saliva sample. While scientists across the world are scrambling to find some sort of immunization, researchers from Florida Atlantic University are working to develop a diagnostic tool to reduce the impact of the outbreak until a vaccine is identified.

"Most of the Zika cases in the United States and especially in Florida are travel related," said Waseem Asghar, Ph.D., lead investigator and assistant professor at the Department of Computer and Electrical Engineering and Computer Science in FAU's College of Engineering and Computer Science and in the Department of Biological Sciences in FAU's Charles E. Schmidt College of Science. "We are working to develop a tool that can be used without expensive laboratory equipment and skilled technicians in various settings like an airport or a community health center to provide reassurance to expectant families and those concerned because of recent travel. For about $2 and within 15 minutes, we hope to accurately determine whether or not an individual has an active infection."

Currently, patients are diagnosed by testing whether they have antibodies against the Zika virus in their bloodstream, however, the antibody test cannot discriminate accurately between the Zika virus and other flaviviruses such as Dengue, West Nile virus and Chikungunya. The more accurate method for detecting the virus is by looking for pieces of the viral genome in a patient's blood sample using a test known as (PCR). PCR is costly ($20,000+), bulky and requires highly skilled laboratory personnel to operate. Furthermore, results for PCR testing can take hours to yield results.

"Flaviviruses are found in mosquitoes and ticks that may infect people and cause a range of mild-to-fatal diseases," said Asghar. "Because flavivirus antibodies cross-react with one another current tests cannot distinguish between them."

This new device is based on technology that Asghar and colleagues developed to detect HIV. It uses inexpensive paper- or plastic-based materials, a cassette-sized container holding up to 12 samples at a time and a receptacle about the size of a tablet. These materials are easy to make, easy to use, and can easily and safely be disposed of by burning, providing an appealing strategy for developing an affordable tool for diagnosing the Zika virus in developing countries as well as low- and middle-income countries where there is limited laboratory infrastructure.

They are working to adapt their device to diagnose the Zika virus, and recently received a $199,280 one-year grant from the Florida Department of Health to establish proof-of-principle and then further test and commercialize this device.

"We would also like to thank FAU's Institute for Sensing and Embedded Network Systems Engineering (I-SENSE) for providing seed grant support to develop a Zika test, which significantly contributed to the development of our current device prototype," said Asghar.

Asghar's collaborators on the grant are Massimo Caputi, Ph.D., co-principal investigator and associate professor of biomedical science in FAU's Charles E. Schmidt College of Medicine, whose research is focused on identifying novel therapeutics for HIV; and Mariano Garcia-Blanco, M.D., Ph.D., professor and chair of biochemistry and molecular biology at the University of Texas Medical Branch at Galveston, whose research is focused on infection of human and insect cells with flaviviruses and autoimmune diseases such as multiple sclerosis.

The Zika virus, transmitted to humans through the bite of an infected Aedes aegypti mosquito, is especially dangerous for pregnant women, and is linked to several severe birth defects transferred to the fetus - including microcephaly - a condition in which a baby is born with a small head or the head stops growing after birth.

From Jan. 1, 2015 to Feb. 15, 2017, the Centers for Disease Control and Prevention (CDC) has listed 5,040 Zika virus cases reported in the U.S. with 4,748 cases in travelers returning from affected areas. Florida has the highest cases of the Zika at 1,069 reported cases with 214 cases acquired through presumed local mosquito-borne transmission and the majority from travelers returning from affected areas.

Explore further: Researchers invent a faster and more accurate test for diagnosing Zika

Related Stories

Researchers invent a faster and more accurate test for diagnosing Zika

January 23, 2017
Researchers from The University of Texas Medical Branch at Galveston, in conjunction with the New York State Department of Health's Wadsworth Center, have developed a new detection test for Zika that is faster and more accurate ...

New York reports first baby born with Zika-related defect

July 22, 2016
New York City on Friday announced its first baby born with Zika-related microcephaly, a permanent brain and skull defect that authorities said the child acquired due to infection with the mosquito-borne virus.

Texas announces first local Zika case (Update)

November 28, 2016
Texas has announced its first case of local Zika virus, making it the second US state after Florida to say it likely has mosquitoes spreading the disease that can cause birth defects.

Zika Virus in the Southeast

October 3, 2016
As of the end of July 2016, there have been 1,658 cases of Zika virus infections diagnosed in the United States. It is believed that most of these infections were contracted outside the United States. While the Zika virus ...

Zika virus: Five things to know

February 8, 2016
A concise "Five things to know about.... Zika virus infection" article for physicians highlights key points about this newly emerged virus in CMAJ (Canadian Medical Association Journal)

In Colombia, deformed babies quadrupled amid Zika crisis: CDC

December 9, 2016
Four times the number of babies born with skull deformities linked to Zika virus were reported in Colombia this year following the outbreak of the mosquito-borne infection, said a US government report Friday.

Recommended for you

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

Portable 3-D scanner assesses patients with elephantiasis

October 17, 2017
An estimated 120 million people worldwide are infected with lymphatic filariasis, a parasitic, mosquito-borne disease that can cause major swelling and deformity of the legs, a condition known as elephantiasis. Health-care ...

New tools to combat kidney fibrosis

October 16, 2017
Interstitial fibrosis – excessive tissue scarring – contributes to chronic kidney disease, which is increasing in prevalence in the United States.

How hepatitis C hides in the body

October 13, 2017
The Hepatitis C (HCV) virus is a sly enemy to have in one's body. Not only does it manage to make itself invisible to the immune system by breaking down communication between the immune cells, it also builds secret virus ...

Largest study yet of malaria in Africa shows historical rates of infection

October 12, 2017
(Medical Xpress)—A team of researchers with members from the Kenya Medical Research Institute, the University of Oxford and the University of KwaZulu-Natal has conducted the largest-ever study of the history of malaria ...

Promising new target for treatment of psoriasis is safe, study shows

October 11, 2017
A protein known to play a significant role in the development of psoriasis can be prevented from functioning without posing a risk to patients, scientists at King's College London have found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.