Gene editing could help tackle cancer and inherited diseases

February 20, 2017
Credit: CC0 Public Domain

Gene editing techniques developed in the last five years could help in the battle against cancer and inherited diseases, a University of Exeter scientist says.

Dr Edze Westra said the ability to splice selected DNA into cells with great precision would become "super important" in the next two decades. There could be benefits for generations of people affected by cancer, failing vision and the diseases of old age or bad genes.

"There is always a risk with this kind of technology and fears about and we have started having discussions about that so we can understand the consequences and long-term risks," said Dr Westra, of the Environment and Sustainability Institute on the University of Exeter's Penryn Campus in Cornwall. "I think in the coming decades will become super important, and I think we will see it being used to cure some inherited diseases, to cure cancers, to restore sight to people by transplanting genes. I think it will definitely have massive importance."

On Tuesday, two highly influential academic bodies in the US shook up the scientific world with a report that, for the first time, acknowledged the medical potential of editing inherited genes. The National Academy of Sciences and National Academy of Medicine ruled that gene editing of the human "germline"—eggs, sperm and embryos—should not be seen as a red line in medical research.

Many critics insist that powerful new gene editing techniques should never be used to alter inherited DNA. They argue that such a move would be the start of a slippery slope leading to "designer" babies with selected features such as blue eyes, high intelligence or sporting prowess.

But the two pillars of the American scientific establishment said that with necessary safeguards, future use of germline gene editing to treat or prevent disease and disability was a "realistic possibility that deserves serious consideration".

Dr Westra is taking part in a discussion on gene editing and its potential implications for society at the American Association for the Advancement of Science (AAAS) annual meeting in Boston, Massachusetts. He said gene editing technology not only held out the promise of fixing genetic faults, but could be used to turn cells into miniature factories that churned out therapeutic chemicals or antibodies.

One application was the use of "" that increase the prevalence of a certain trait in a population. For instance, gene editing machinery placed inside the cells of large numbers of malaria transmitting mosquitoes could prevent them spreading the organism that causes the disease to humans.

The most promising form of gene editing, known as CRISPR/Cas9, was first demonstrated in 2012. It employs a defence system bacteria use to protect themselves against viruses. A carefully targeted enzyme is used as chemical "scissors" that cut through specific sections of double stranded DNA. Then the cell's own DNA repair machinery can be exploited to insert the "pasted" genetic material.

Dr Westra said: "Gene editing is causing a true revolution in science and medicine because it allows for very precise DNA surgery. "A mutation in a gene that causes disease can now be repaired using CRISPR."

Explore further: No designer babies, but gene editing to avoid disease? Maybe

Related Stories

No designer babies, but gene editing to avoid disease? Maybe

February 14, 2017
Don't expect designer babies any time soon—but a major new ethics report leaves open the possibility of one day altering human heredity to fight genetic diseases, with stringent oversight, using new tools that precisely ...

New gene editing tools force renewed debate over therapeutic germline alteration

May 1, 2015
Recent evidence demonstrating the feasibility of using novel CRISPR/Cas9 gene editing technology to make targeted changes in the DNA of human embryos is forcing researchers, clinicians, and ethicists to revisit the highly ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.