Possible genetic marker for ALS found might prove useful for measuring effectiveness of treatments

March 30, 2017 by Bob Yirka, Medical Xpress report

Motor neurons from mice that received an experimental ALS treatment (top) displayed lower levels of a newly identified biomarker (brown areas) than observed in untreated animals (bottom). Credit: T.F. Gendron et al., Science Translational Medicine (2017)
(Medical Xpress)—A very large team of researchers with members from the U.S., Italy and the Netherlands has found what might be a marker for ALS, which the team suggests could be used as a yardstick for measuring the effectiveness of treatments in clinical trials. In their paper published in the journal Science Translational Medicine, the team describes how they connected a genetic abnormality common in ALS patients with a protein they found in blood cells and cerebrospinal fluid.

Amyotrophic lateral sclerosis (ALS), aka Lou Gehrig's disease, is a disorder that causes nerve degeneration leading to muscle atrophy and eventually death. To date, there is no known cure, though one drug has been found to delay the progression of the disease for a few months. One of the things standing in the way of a cure is a lack of tests that can tell researchers if a treatment under study is having any discernable positive impact. This is because there is no test for the disorder itself. In this new effort, the researchers believe they may have found a marker that could be used to test for the disorder, and more importantly, serve as a means for measuring whether a drug developed to reduce symptoms, or better yet a cure for the disease, actually does what is hoped.

The researchers started by looking at patients with a called C9ORF72 which is believed to be behind the onset of most types of genetically caused ALS (and also some types of dementia.) During their research, they discovered that many such patients had more than normal amounts of a protein called polyGP in their and also in their . Inspired, they conducted a study comparing patients with polyGP in their cerebrospinal fluid with those that had the mutation and with control groups.

The team reports that they found the protein buildup in 134 people who had the mutation, which included 83 people who had ALS, 27 people who had no symptoms, and 24 people who had other types of diseases. Furthermore, they found that the protein buildup was not found in 120 people who did not have the mutation, including those with different types of ALS.

These findings, the group suggests, mean that testing for polyGP might someday soon be used as a viable way to measure treatment success, which could perhaps one day lead to better therapies or perhaps a cure.

Explore further: Children of patients with C9orf72 mutations are at a greater risk of frontotemporal dementia or ALS at a younger age

More information: Tania F. Gendron et al. Poly(GP) proteins are a useful pharmacodynamic marker for-associated amyotrophic lateral sclerosis, Science Translational Medicine (2017). DOI: 10.1126/scitranslmed.aai7866

There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G4C2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G4C2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72-associated ALS (c9ALS). Therapeutics that target G4C2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G4C2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G4C2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G4C2 RNA and downstream G4C2 RNA–mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G4C2 RNA–based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention.

Related Stories

Children of patients with C9orf72 mutations are at a greater risk of frontotemporal dementia or ALS at a younger age

February 14, 2017
The most common genetic cause of the brain diseases frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is a mutation in the C9orf72 gene. Researchers from VIB and UAntwerp, headed by Prof. Christine Van ...

Scientists discover way of developing test for Parkinson's disease diagnosis

December 7, 2016
Misfolded proteins associated with Parkinson's disease were detected in cerebrospinal fluid by scientists at McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), paving the way to ...

World-first way to fast-track drugs for killer disease

February 23, 2017
Flinders University researchers are pioneering a new and simple test to pick up signals of Motor Neuron Disease in patients.

Blood test may help differentiate Parkinson's from similar diseases

February 8, 2017
A simple blood test may be as accurate as a spinal fluid test when trying to determine whether symptoms are caused by Parkinson's disease or another atypical parkinsonism disorder, according to a new study published in the ...

Brain imaging links Alzheimer's decline to tau protein

May 11, 2016
A buildup of plaque and dysfunctional proteins in the brain are hallmarks of Alzheimer's disease. While much Alzheimer's research has focused on accumulation of the protein amyloid beta, researchers have begun to pay closer ...

Drug compound halts Alzheimer's-related damage in mice

January 25, 2017
Under ordinary circumstances, the protein tau contributes to the normal, healthy functioning of brain neurons. In some people, though, it collects into toxic tangles that damage brain cells. Such tangles are a hallmark of ...

Recommended for you

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

In live brain function, researchers are finally seeing red

November 12, 2018
For years, green has been the most reliable hue for live brain imaging, but after using a new high-throughput screening method, researchers at the John B. Pierce Laboratory and the Yale School of Medicine, together with collaborators ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.